Publications by authors named "Ashin Taniguchi"

Poly(acrylamide) (PAAm)-modified hydrophilic interaction chromatography (HILIC) columns were prepared via surface-initiated atom transfer radical polymerization (SI-ATRP) and free radical polymerization (FRP) to generate brush-like and mushroom-like polymer chains on silica particles, respectively. The maltose homologues (MHs) and cyclodextrins (CDs) were chosen as analytes to evaluate steric selectivity by the different polymer morphologies in the ATRP-PAAm and the FRP-PAAm columns. The ATRP-PAAm exhibited superior retention than the FRP-PAAm and three commercial HILIC columns.

View Article and Find Full Text PDF

Herein, commercially available columns employed in hydrophilic interaction chromatography (HILIC) were characterized by determining their ability to selectively distinguish the minute structural differences between small molecules such as nucleosides and xanthines in complex sample matrices. Principal component analysis (PCA) was applied to the data obtained from structurally similar analytes, and the results showed that HILIC columns could generally be classified into two groups: (i) silane-modified columns that were prepared from either native silica particles or silica particles modified with low-molecular-weight silanes and (ii) polymer-modified columns obtained from silica particles functionalized with organic polymers. These two groups could be further subdivided based on the functionalities attached to the respective stationary phases.

View Article and Find Full Text PDF

Silica particles with various pore sizes were modified with poly(acrylamide) via surface-initiated atom-transfer radical polymerization (SI-ATRP) under different reaction conditions. Twenty different columns were prepared and characterized according to a test method for hydrophilic interaction chromatography (HILIC) columns. Hydrophilic retention by the SI-ATRP columns was much higher than that of poly(acrylamide) columns prepared via free-radical polymerization and many commercially available HILIC columns.

View Article and Find Full Text PDF