Wave phenomena can be artificially engineered by scattering from metasurfaces, which aids in the design of radio-frequency and optical devices for wireless communication, sensing, imaging, wireless power transfer and bio/medical applications. Scattering responses vary with changing frequency; conversely, they remain unchanged at a constant frequency, which has been a long-standing limitation in the design of devices leveraging wave scattering phenomena. Here, we present metasurfaces that can scatter incident waves according to two variables-the frequency and pulse width-in multiple bands.
View Article and Find Full Text PDFIn this study, we numerically demonstrate how the response of recently reported circuit-based metasurfaces is characterized by their circuit parameters. These metasurfaces, which include a set of four diodes as a full wave rectifier, are capable of sensing different waves even at the same frequency in response to the incident waveform, or more specifically the pulse width. This study reveals the relationship between the electromagnetic response of such waveform-selective metasurfaces and the SPICE parameters of the diodes used.
View Article and Find Full Text PDFWireless communications and sensing have notably advanced thanks to the recent developments in both software and hardware. Although various modulation schemes have been proposed to efficiently use the limited frequency resources by exploiting several degrees of freedom, antenna performance is essentially governed by frequency only. Here, we present an antenna design concept based on metasurfaces to manipulate antenna performances in response to the time width of electromagnetic pulses.
View Article and Find Full Text PDFAnisotropic impedance surfaces have been used to control surface wave propagation, which has benefited applications across a variety of fields including radio-frequency (RF) and optical devices, sensing, electromagnetic compatibility, wireless power transfer, and communications. However, the responses of these surfaces are fixed once they are fabricated. Although tunable impedance surfaces have been introduced by utilizing power-dependent nonlinear components, such a tuning mechanism is generally limited to specific applications.
View Article and Find Full Text PDF