Publications by authors named "Ashfaq Mahmood"

Chronic obstructive pulmonary disease (COPD) is linked to both cigarette smoking and genetic determinants. We have previously identified iron-responsive element-binding protein 2 (IRP2) as an important COPD susceptibility gene and have shown that IRP2 protein is increased in the lungs of individuals with COPD. Here we demonstrate that mice deficient in Irp2 were protected from cigarette smoke (CS)-induced experimental COPD.

View Article and Find Full Text PDF

The pathogenesis of chronic obstructive pulmonary disease (COPD) remains unclear, but involves loss of alveolar surface area (emphysema) and airway inflammation (bronchitis) as the consequence of cigarette smoke (CS) exposure. Previously, we demonstrated that autophagy proteins promote lung epithelial cell death, airway dysfunction, and emphysema in response to CS; however, the underlying mechanisms have yet to be elucidated. Here, using cultured pulmonary epithelial cells and murine models, we demonstrated that CS causes mitochondrial dysfunction that is associated with a reduction of mitochondrial membrane potential.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) involves aberrant airway inflammatory responses to cigarette smoke (CS) that are associated with epithelial cell dysfunction, cilia shortening, and mucociliary clearance disruption. Exposure to CS reduced cilia length and induced autophagy in vivo and in differentiated mouse tracheal epithelial cells (MTECs). Autophagy-impaired (Becn1+/- or Map1lc3B-/-) mice and MTECs resisted CS-induced cilia shortening.

View Article and Find Full Text PDF

The reaction of the Tc(I) complex [Tc(NO)Cl(HOMe)(PPh)] with stoichiometric amounts of 2-mercatopyridine and a proton scavenger yields [Tc(NO)Cl(Spy)(PPh)] or [Tc(NO)(Spy)(PPh)], depending upon quantities of ligands employed. These two complexes have been structurally characterized. The small bite angles of the bidentate mercaptopyridine ligands cause significant deviation from octahedral coordination geometry.

View Article and Find Full Text PDF

Unlabelled: Dialkylamino-alkyl-benzamides possess an affinity for melanin, suggesting that labeling of such benzamides with (18)F could potentially produce melanin-targeted PET probes able to identify melanotic melanoma metastases in vivo with high sensitivity and specificity.

Methods: In this study, N-[2-(diethylamino)ethyl]-4-(18)F-fluorobenzamide ((18)F-FBZA) was synthesized via a 1-step conjugation reaction. The sigma-receptor binding affinity of (19)F-FBZA was determined along with the in vitro cellular uptake of radiofluorinated (18)F-FBZA in B16F10 cells.

View Article and Find Full Text PDF

Metal radionuclide solutions at neutral pH adhere to plastic containers. Adsorption of radionuclides on the walls of phantoms leads to a nonuniform activity distribution, which could adversely affect imaging studies, as well as phantom-based validations of absorbed dose calculations used in radioimmunotherapy, requiring accurate knowledge of the underlying activity distribution. In the work reported here, the authors determined the degree of metal chelation required to minimize metallic radionuclide oxide formation and adsorption on phantom walls in order to yield more reliable experimental data for validating image-based dosimetry.

View Article and Find Full Text PDF

Evaluation of [99mTc]oxotechnetium(V) complexes of the amine-amide-dithiol (AADT) chelates containing tertiary amine substituents as small-molecule probes for the diagnostic imaging of metastatic melanoma has shown that technetium-99m-labeled AADT-(CH2)2-NEt2 (99mTc-1) has the highest tumor uptake and other favorable biological properties. We have, therefore, assessed this agent in a more realistic metastatic melanoma model in which, after i.v.

View Article and Find Full Text PDF

On the basis of the avid uptake of radioiodinated benzamides by melanoma cells, (99m)Tc complexes containing the structural elements of N-(dialkylaminoalkyl)benzamide pharmacophores have been synthesized and evaluated in vitro and in vivo for melanoma uptake. One of the complexes Tc-12 containing the ligand 4-(S-benzoyl-2-thioacetyl-glycyl-glycylamido)-N-(2-diethylaminoethyl)benzamide (11) displayed the highest melanoma uptake. The 1-h melanoma uptake values and the corresponding blood counts indicate an interdependence of tumor uptake and bioavailability of the (99m)Tc complexes.

View Article and Find Full Text PDF