Publications by authors named "Ashfaq A Mir"

Aim: Resistance exercise increases muscle mass over time. However, the early signalling events leading to muscle growth are not yet well-defined. Here, we aim to identify new signalling pathways important for muscle remodelling after exercise.

View Article and Find Full Text PDF

The glucocorticoid receptor (GR) is a potent metabolic regulator and a major drug target. While GR is known to play integral roles in circadian biology, its rhythmic genomic actions have never been characterized. Here we mapped GR's chromatin occupancy in mouse livers throughout the day and night cycle.

View Article and Find Full Text PDF

Chromatin immunoprecipitation coupled to next generation sequencing (ChIP-seq) is a powerful tool to map context-dependent genome-wide binding of nuclear hormone receptors and their coregulators. This information can provide important mechanistic insight into where, when and how DNA-protein interactions are linked to target gene regulation. Here we describe a simple, yet reliable ChIP-seq method, including nuclear isolation from frozen tissue samples, cross-linking DNA-protein complexes, chromatin shearing, immunoprecipitation, and purification of ChIP DNA.

View Article and Find Full Text PDF

Circadian clocks are fundamental physiological regulators of energy homeostasis, but direct transcriptional targets of the muscle clock machinery are unknown. To understand how the muscle clock directs rhythmic metabolism, we determined genome-wide binding of the master clock regulators brain and muscle ARNT-like protein 1 (BMAL1) and REV-ERBα in murine muscles. Integrating occupancy with 24-hr gene expression and metabolomics after muscle-specific loss of BMAL1 and REV-ERBα, here we unravel novel molecular mechanisms connecting muscle clock function to daily cycles of lipid and protein metabolism.

View Article and Find Full Text PDF

Retrotransposons account for almost half of our genome. They are mobile genetics elements-also known as jumping genes--but only the L1HS subfamily of Long Interspersed Nuclear Elements (LINEs) has retained the ability to jump autonomously in modern humans. Their mobilization in germline--but also some somatic tissues--contributes to human genetic diversity and to diseases, such as cancer.

View Article and Find Full Text PDF

L1 retrotransposons have a prominent role in reshaping mammalian genomes. To replicate, the L1 ribonucleoprotein particle (RNP) first uses its endonuclease (EN) to nick the genomic DNA. The newly generated DNA end is subsequently used as a primer to initiate reverse transcription within the L1 RNA poly(A) tail, a process known as target-primed reverse transcription (TPRT).

View Article and Find Full Text PDF