The development of radiation-tolerant structural materials is an essential element for the success of advanced nuclear energy concepts. A proven strategy to increase radiation resistance is to create microstructures with a high density of internal defect sinks, such as grain boundaries (GBs). However, as GBs absorb defects, they undergo internal transformations that limit their ability to capture defects indefinitely.
View Article and Find Full Text PDFPlasmonic nanoparticles play an important role in applications for chemical sensing, catalysis, medicine, and biosensing. The localized surface plasmon resonance (LSPR) of a nanoparticle is determined by factors such as size, shape, and the local dielectric environment. Here, we report a simple colloidal synthesis method to create core-shell plasmonic nanoparticles with a gold core and a copper oxide (CuO) shell.
View Article and Find Full Text PDFGrain boundaries are critical in determining the properties of materials, including mechanical stability, conductivity, and corrosion resistance. The specific properties of materials depend not only on the misorientation of the crystals, the three most commonly characterized parameters, but also on the angle of the grain boundary plane between the two crystals, the final two parameters in the five-parameter macroscopic description of the grain boundary. The method presented here allows for the direct measurement of all five parameters of the grain boundary in a transmission electron microscopy specimen of various morphologies.
View Article and Find Full Text PDFHigh entropy alloy (HEA) nanoparticles hold promise as active and durable (electro)catalysts. Understanding their formation mechanism will enable rational control over composition and atomic arrangement of multimetallic catalytic surface sites to maximize their activity. While prior reports have attributed HEA nanoparticle formation to nucleation and growth, there is a dearth of detailed mechanistic investigations.
View Article and Find Full Text PDFLiquid-phase transmission electron microscopy (LP-TEM) enables one to directly visualize the formation of plasmonic nanoparticles and their postsynthetic modification, but the relative contributions of plasmonic hot electrons and radiolysis to metal precursor reduction remain unclear. Here we show silver deposition onto plasmonic gold nanorods (AuNRs) during LP-TEM is dominated by water radiolysis-induced chemical reduction. Silver was observed with LP-TEM to form bipyramidal shells at higher surfactant coverage and tip-preferential lobes at lower surfactant coverage.
View Article and Find Full Text PDFUnderstanding the nature of hot carrier pathways following surface plasmon excitation of heterometallic nanostructures and their mechanistic prevalence during photoelectrochemical oxidation of complex hydrocarbons, such as ethanol, remains challenging. This work studies the fate of carriers from Au nanorods before and after the presence of reductively photodeposited Pd at the single-particle level using scattering and emission spectroscopy, along with ensemble photoelectrochemical methods. A sub-2 nm epitaxial Pd shell was reductively grown onto colloidal Au nanorods via hot carriers generated from surface plasmon resonance excitation in the presence of [PdCl].
View Article and Find Full Text PDFHelium bubbles are known to form in nuclear reactor structural components when displacement damage occurs in conjunction with helium exposure and/or transmutation. If left unchecked, bubble production can cause swelling, blistering, and embrittlement, all of which substantially degrade materials and-moreover-diminish mechanical properties. On the mission to produce more robust materials, nanocrystalline (NC) metals show great potential and are postulated to exhibit superior radiation resistance due to their high defect and particle sink densities; however, much is still unknown about the mechanisms of defect evolution in these systems under extreme conditions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2022
The ability to harness the catalytic oxidation of hydrocarbons is critical for both clean energy production and air pollutant elimination, which requires a detailed understanding of the dynamic role of the nanophase structure and surface reactivity under the reaction conditions. We report here findings of an in situ/operando study of such details of a ternary nanoalloy under the propane oxidation condition using high-energy synchrotron X-ray diffraction coupled to atomic pair distribution function (HE-XRD/PDF) analysis and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The catalysts are derived by alloying Pt with different combinations of second (Pd) and third (Ni) transition metals, showing a strong dependence of the catalytic activity on the Ni content.
View Article and Find Full Text PDFRobust materials capable of heterogeneous reactivity are valuable for addressing toxic chemical clean up. Synthetic manipulations for generating titanium oxide nanomaterials have been utilized to alter both photochemical (1000 nm > λ > 400 nm) and chemical heterogeneous reactivity with 2-chloroethyl ethyl sulfide (2-CEES). Synthesizing TiO nanomaterials in the presence of long-chain alkylphosphonic acids enhanced the visible light-driven oxidation of the thioether sulfur of 2-CEES.
View Article and Find Full Text PDFColloidal synthesis of alloyed multimetallic nanocrystals with precise composition control remains a challenge and a critical missing link in theory-driven rational design of functional nanomaterials. Liquid-phase transmission electron microscopy (LP-TEM) enables direct visualization of nanocrystal formation mechanisms that can inform discovery of design rules for nanocrystal synthesis, but it remains unclear whether the salient flask synthesis chemistry is preserved under electron beam irradiation during LP-TEM. Here, we demonstrate controlled LP-TEM synthesis of alloyed AuCu nanocrystals while maintaining the molecular structure of electron beam sensitive metal thiolate precursor complexes.
View Article and Find Full Text PDFThin indium tin oxide (ITO) films have been used as a medium to investigate epsilon-near-zero (ENZ) behavior for unconventional tailoring and manipulation of the light-matter interaction. However, the ENZ wavelength regime has not been studied carefully for ITO films with thicknesses larger than the wavelength. Thick ENZ ITO film would enable the development of a new family of ENZ-based opto-electronic devices that take full advantage of the ENZ behavior.
View Article and Find Full Text PDFThe ability to control the surface composition and morphology of alloy catalysts is critical for achieving high activity and durability of catalysts for oxygen reduction reaction (ORR) and fuel cells. This report describes an efficient surfactant-free synthesis route for producing a twisty nanowire (TNW) shaped platinum-iron (PtFe) alloy catalyst (denoted as PtFe TNWs) with controllable bimetallic compositions. PtFe TNWs with an optimal initial composition of ∼24% Pt are shown to exhibit the highest mass activity (3.
View Article and Find Full Text PDFA protocol is described to photocatalytically guide Pd deposition onto Au nanorods (AuNR) using surface plasmon resonance (SPR). Excited plasmonic hot electrons upon SPR irradiation drive reductive deposition of Pd on colloidal AuNR in the presence of [PdCl4]. Plasmon-driven reduction of secondary metals potentiates covalent, sub-wavelength deposition at targeted locations coinciding with electric field "hot-spots" of the plasmonic substrate using an external field (e.
View Article and Find Full Text PDFIn many cases, electron counting with direct detection sensors offers improved resolution, lower noise, and higher pixel density compared to conventional, indirect detection sensors for electron microscopy applications. Direct detection technology has previously been utilized, with great success, for imaging and diffraction, but potential advantages for spectroscopy remain unexplored. Here we compare the performance of a direct detection sensor operated in counting mode and an indirect detection sensor (scintillator/fiber-optic/CCD) for electron energy-loss spectroscopy.
View Article and Find Full Text PDF