Publications by authors named "Asher K Haug-Baltzell"

Objectives: The enormous toll of the COVID-19 pandemic has heightened the urgency of collecting and analysing population-scale datasets in real time to monitor and better understand the evolving pandemic. The objectives of this study were to examine the relationship of risk factors to COVID-19 susceptibility and severity and to develop risk models to accurately predict COVID-19 outcomes using rapidly obtained self-reported data.

Design: A cross-sectional study.

View Article and Find Full Text PDF

Multiple COVID-19 genome-wide association studies (GWASs) have identified reproducible genetic associations indicating that there is a genetic component to susceptibility and severity risk. To complement these studies, we collected deep coronavirus disease 2019 (COVID-19) phenotype data from a survey of 736,723 AncestryDNA research participants. With these data, we defined eight phenotypes related to COVID-19 outcomes: four phenotypes that align with previously studied COVID-19 definitions and four 'expanded' phenotypes that focus on susceptibility given exposure, mild clinical manifestations and an aggregate score of symptom severity.

View Article and Find Full Text PDF

Summary: The EPIC-CoGe browser is a web-based genome visualization utility that integrates the GMOD JBrowse genome browser with the extensive CoGe genome database (currently containing over 30 000 genomes). In addition, the EPIC-CoGe browser boasts many additional features over basic JBrowse, including enhanced search capability and on-the-fly analyses for comparisons and analyses between all types of functional and diversity genomics data. There is no installation required and data (genome, annotation, functional genomic and diversity data) can be loaded by following a simple point and click wizard, or using a REST API, making the browser widely accessible and easy to use by researchers of all computational skill levels.

View Article and Find Full Text PDF

Long intergenic non-coding RNAs (lincRNAs) are an abundant and functionally diverse class of eukaryotic transcripts. Reported lincRNA repertoires in mammals vary, but are commonly in the thousands to tens of thousands of transcripts, covering ~90% of the genome. In addition to elucidating function, there is particular interest in understanding the origin and evolution of lincRNAs.

View Article and Find Full Text PDF

This workflow allows novice researchers to leverage advanced computational resources such as cloud computing to carry out pairwise comparative transcriptomics. It also serves as a primer for biologists to develop data scientist computational skills, e.g.

View Article and Find Full Text PDF