Endurance running training can lead to gradual accumulation of inflammation and soreness ultimately resulting in overuse injuries. Management of soreness and inflammation with pharmaceuticals (i.e.
View Article and Find Full Text PDFContext: Endurance running places substantial physiological strain on the body, which can develop into chronic inflammation and overuse injuries, negatively affecting subsequent training and performance. A recent study found that dietary polyphenols and methlysulfonylmethane (MSM) can reduce systemic inflammation and oxidative stress without adverse side effects.
Objective: The purpose was to identify a set of candidate protein and RNA biomarkers that are associated with improved outcomes related to inflammation and muscle injury, when athletes used 3 proprietary supplements both prior to and during early recovery from a half-marathon race.
Biological response to skeletal muscle injury time course is generally classified as initial (elevated within first 4-h), delayed (elevated at 24-h), and/or prolonged (elevated at 4-h and sustained to 24-h). Accurate description of this process requires the ability to measure a robust set of RNA and protein biomarkers, yet such an approach is not common and not always feasible. This method proposes a novel experimental approach that focuses on the use of bead-based multiplex detection to measure mRNA, lncRNA, cytokines, soluble cytokine receptors, and myokines at 4-h and 24-h post muscle injury.
View Article and Find Full Text PDFBead-based analysis methods allow for the exploration of a variety of complex biological processes. In particular, these techniques can be applied to better understand how peripheral muscle injury contributes to systemic inflammation. Understanding how these two processes affect one another can give additional insight concerning how changes in inflammation effect readiness to perform in exercise and work environments.
View Article and Find Full Text PDF