Discovering therapeutic agents: New bioactive agents, either as sole or combinational agents, have been constructed through the synthetic manipulation of the intermediates within the total synthesis of the uvaretin class of natural products. It was found that increasing the hydrophobic character of the phenolic core correlates to a decrease in sole agent cytotoxicity. The synthesis of new, small chemical screening libraries (CSL) constructed from the intermediates of our total synthesis route of the uvaretin class of natural products is demonstrated herein.
View Article and Find Full Text PDFHerein, we disclose the development of a synthetic route to gain access to the uvaretin class of chalcone natural products. In this, the construction of a small library was achieved, and the collection was evaluated for cytotoxicity and other biological properties. Uvaretin () was accessed a seven-step route in an overall yield of 15.
View Article and Find Full Text PDF6-Thiopurine (6TP) is a potent cytotoxic agent that is a clinically prescribed anti-metabolite employed in the treatment of numerous blood cancers since 1952. However, its reported severe toxicities limit its general usage in the clinic. We previously have undertaken investigations into identifying the mode of toxicity for 6TP, and have found that the oxidative metabolites of 6TP, specifically 6-thiouric acid (6TU), is responsible for the inhibition of UDP-glucose dehydrogenase (UDPGDH) in a UV-vis method.
View Article and Find Full Text PDFResults of model studies demonstrating a stereoselective synthetic route to tricyclic analogues of the bis(piperidine) alkaloid xestoproxamine C are presented. Dearomatization of a tricyclic pyridine derivative to afford an alkylidene dihydropyridine (anhydrobase) intermediate followed by catalytic heterogeneous hydrogenation was used to install the correct relative stereochemistry about the bis(piperidine) ring system. Other key features of these model studies include development of an efficient ring-closing metathesis procedure to prepare macrocyclic derivatives of 3,4-disusbstituted pyridines, intramolecular cyclizations of alkylidene dihydropyridines to establish pyridine-substituted pyrrolidines and piperidines, successful homologation of pyridine-4-carboxaldehydes using formaldehyde dimethyl thioacetal monoxide (FAMSO), and application of B-alkyl Suzuki coupling to assemble substituted pyridines.
View Article and Find Full Text PDFAldehyde and ketone electrophiles incorporated into the side chains of 2- and 4-alkylpyridines participate in intramolecular aldol-like condensations with pyridine benzylic carbons in the presence of Brønsted acid catalysts. Pyridines featuring β-ketoamide side chains undergo cyclization in the presence of 10 mol% TfOH to afford pyridyl-substituted hydroxy lactams in good yield. These products were found to be resistant to further dehydration under a variety of conditions, however treatment with thionyl chloride elicited an unusual dehydration/oxidation reaction sequence.
View Article and Find Full Text PDF