Publications by authors named "Ash Parameswaran"

Efforts to further improve the clinical management of prostate cancer (PCa) are hindered by delays in diagnosis of tumours and treatment deficiencies, as well as inaccurate prognoses that lead to unnecessary or inefficient treatments. The quantitative and qualitative analysis of circulating tumour cells (CTCs) may address these issues and could facilitate the selection of effective treatment courses and the discovery of new therapeutic targets. Therefore, there is much interest in isolation of elusive CTCs from blood.

View Article and Find Full Text PDF

Biologists frequently collect and analyze biospecimens in naturalistic (i.e., field) conditions to ascertain information regarding the physiological status of their study participants.

View Article and Find Full Text PDF

The quantitative and qualitative analysis of circulating tumor cells (CTCs) has the potential to improve the clinical management of several cancers, including prostate cancer. As such, there is much interest in the isolation of CTCs from the peripheral blood of cancer patients. We report the design, fabrication, and proof-of-principle testing of an integrated permalloy-based microfluidic chip for immunomagnetic isolation of blood-borne prostate cancer cells using an antibody targeting prostate surface membrane antigen (PSMA).

View Article and Find Full Text PDF

Background: In radiotherapy, temporary translocations of the internal organs and tumor induced by respiratory and cardiac activities can undesirably lead to significantly lower radiation dose on the targeted tumor but more harmful radiation on surrounding healthy tissues. Respiratory and cardiac gated radiotherapy offers a potential solution for the treatment of tumors located in the upper thorax. The present study focuses on the design and development of simultaneous acquisition of respiratory and cardiac signal using electrical impedance technology for use in dual gated radiotherapy.

View Article and Find Full Text PDF

Efforts to improve the clinical management of several cancers include finding better methods for the quantitative and qualitative analysis of circulating tumor cells (CTCs). However, detection and isolation of CTCs from the blood circulation is not a trivial task given their scarcity and the lack of reliable markers to identify these cells. With a variety of emerging technologies, a thorough review of the exploited principles and techniques as well as the trends observed in the development of these technologies can assist researchers to recognize the potential improvements and alternative approaches.

View Article and Find Full Text PDF

Devices capable of automatically aligning cells onto geometrical arrays are of great interest to biomedical researchers. Such devices can facilitate the study of numerous cells while the cells remain physically separated from one another. In this way, cell arrays reduce cell-to-cell interactions while the cells are all subjected to common stimuli, which allows individual cell behaviour to be revealed.

View Article and Find Full Text PDF

In this paper, we report a novel and cost-effective fabrication technique to produce electrode arrays that can be used for monitoring and electrical manipulation of the molecular orientation of DNA self-assembled monolayers (SAMs) on gold. The electrode arrays were prepared from gold coated glass sides or compact discs (CD-Rs) by using standard office inkjet printers without any hardware or software modifications. In this method, electrode arrays of varied shape and size (from submillimeter to centimeter) can be rapidly fabricated and are suitable for standard electrochemical measurements.

View Article and Find Full Text PDF

Detection of polymerase chain reaction (PCR) products obtained from cultured greenhouse fungal pathogens, Botrytis cinerea and Didymella bryoniae has been achieved using a previously developed microfluidic microarray assembly (MMA) device. The flexible probe construction and rapid DNA detection resulted from the use of centrifugal pumping in the steps of probe introduction and sample delivery, respectively. The line arrays of the oligonucleotide probes were "printed" on a CD-like glass chip using a polydimethylsiloxane (PDMS) polymer plate with radial microfluidic channels, and the sample hybridizations were conducted within the spiral channels on the second plate.

View Article and Find Full Text PDF