Liquid biopsy techniques using cell-free DNA (cfDNA) play an increasingly important role in the characterization and surveillance of solid tumors. For blood cancers, molecular response assessment techniques using circulating malignant cells or bone marrow aspirates are well established in clinical care. However, cfDNA has an emerging role in hematology as well, with the opportunity for disease assessment and quantification independent of circulating disease burden or invasive biopsies.
View Article and Find Full Text PDFTransplant Cell Ther
October 2024
Purpose: Small cell lung cancer (SCLC) is characterized by rapid progression after platinum resistance. Circulating tumor (ctDNA) dynamics early in treatment may help determine platinum sensitivity.
Materials And Methods: Serial plasma samples were collected from patients receiving platinum-based chemotherapy for SCLC on the first 3 days of cycle one and on the first days of subsequent cycles with paired samples collected both before and again after infusions.
Introduction: The current standard of care for patients with inoperable stage III non-small cell lung cancer includes chemoradiotherapy (CRT) followed by 1 year of checkpoint inhibitor (CPI) therapy. Nevertheless, the optimal duration of consolidation CPI remains unknown. Here, we characterized the relationship between circulating tumor DNA (ctDNA) minimal residual disease (MRD) and clinical outcomes of patients with unresectable locally advanced non-small cell lung cancer treated on a phase 2 trial of short-course consolidation immunotherapy after CRT, with the goal of testing whether ctDNA may be able to identify patients who do not require a full year of treatment.
View Article and Find Full Text PDFBackground: The risk of second tumors after chimeric antigen receptor (CAR) T-cell therapy, especially the risk of T-cell neoplasms related to viral vector integration, is an emerging concern.
Methods: We reviewed our clinical experience with adoptive cellular CAR T-cell therapy at our institution since 2016 and ascertained the occurrence of second tumors. In one case of secondary T-cell lymphoma, a broad array of molecular, genetic, and cellular techniques were used to interrogate the tumor, the CAR T cells, and the normal hematopoietic cells in the patient.
Cerebrospinal fluid tumor-derived DNA (CSF-tDNA) analysis is a promising approach for monitoring the neoplastic processes of the central nervous system. We applied a lung cancer-specific sequencing panel (CAPP-Seq) to 81 CSF, blood, and tissue samples from 24 lung cancer patients who underwent lumbar puncture (LP) for suspected leptomeningeal disease (LMD). A subset of the cohort (N = 12) participated in a prospective trial of osimertinib for refractory LMD in which serial LPs were performed before and during treatment.
View Article and Find Full Text PDFChimeric antigen receptor (CAR) T cells directed against CD19 (CAR19) are a revolutionary treatment for B-cell lymphomas (BCLs). CAR19 cell expansion is necessary for CAR19 function but is also associated with toxicity. To define the impact of CAR19 expansion on patient outcomes, we prospectively followed a cohort of 236 patients treated with CAR19 (brexucabtagene autoleucel or axicabtagene ciloleucel) for mantle cell lymphoma (MCL), follicular lymphoma, and large BCL (LBCL) over the course of 5 years and obtained CAR19 expansion data using peripheral blood immunophenotyping for 188 of these patients.
View Article and Find Full Text PDFHeterogeneity in the tumor microenvironment (TME) of follicular lymphomas (FLs) can affect clinical outcomes. Current immunotherapeutic strategies, including antibody- and cell-based therapies, variably overcome pro-tumorigenic mechanisms for sustained disease control. Modeling the intact FL TME, with its native, syngeneic tumor-infiltrating leukocytes, is a major challenge.
View Article and Find Full Text PDFMost diffuse large B-cell lymphoma (DLBCL) patients treated with bispecific antibodies (BsAb) or chimeric antigen receptor (CAR) T cells fail to achieve durable treatment responses, underscoring the need for a deeper understanding of mechanisms that regulate the immune environment and response to treatment. Here, an integrative, multi-omic approach was employed to characterize DLBCL immune environments, which effectively segregated DLBCLs into four quadrants - termed DLBCL-immune quadrants (IQ) - defined by cell-of-origin and immune-related gene set expression scores. Recurrent genomic alterations were enriched in each IQ, suggesting that lymphoma cell-intrinsic alterations contribute to orchestrating unique DLBCL immune environments.
View Article and Find Full Text PDFThe scarcity of malignant Hodgkin and Reed-Sternberg cells hampers tissue-based comprehensive genomic profiling of classic Hodgkin lymphoma (cHL). By contrast, liquid biopsies show promise for molecular profiling of cHL due to relatively high circulating tumour DNA (ctDNA) levels. Here we show that the plasma representation of mutations exceeds the bulk tumour representation in most cases, making cHL particularly amenable to noninvasive profiling.
View Article and Find Full Text PDFTumor-infiltrating regulatory T cells (Tregs) contribute to an immunosuppressive tumor microenvironment. Despite extensive studies, the prognostic impact of tumor-infiltrating Tregs in B-cell non-Hodgkin lymphomas (B-NHLs) remains unclear. Emerging studies suggest substantial heterogeneity in the phenotypes and suppressive capacities of Tregs, emphasizing the importance of understanding Treg diversity and the need for additional markers to identify highly suppressive Tregs.
View Article and Find Full Text PDFIn diffuse large B-cell lymphoma (DLBCL), a positive interim positron emission tomography (PET) scan predicts treatment failure, but the proportion of high-risk patients thus identified is small. To improve prediction, we combined the interim PET result with the presence or absence of an associated IgM gammopathy. Of 108 DLBCL patients participating in a prospective trial, nine (8%) were interim PET positive and 19 (18%) had an IgM gammopathy.
View Article and Find Full Text PDFUnlabelled: Follicular lymphomas (FL) are characterized by BCL2 translocations, often detectable in blood years before FL diagnosis, but also observed in aging healthy individuals, suggesting additional lesions are required for lymphomagenesis. We directly characterized early cooperating mutations by ultradeep sequencing of prediagnostic blood and tissue specimens from 48 subjects who ultimately developed FL. Strikingly, CREBBP lysine acetyltransferase (KAT) domain mutations were the most commonly observed precursor lesions, and largely distinguished patients developing FL (14/48, 29%) from healthy adults with or without detected BCL2 rearrangements (0/13, P = 0.
View Article and Find Full Text PDFTissues are composed of diverse cell types and cellular states that organize into distinct ecosystems with specialized functions. EcoTyper is a collection of machine learning tools for the large-scale delineation of cellular ecosystems and their constituent cell states from bulk, single-cell, and spatially resolved gene expression data. In this chapter, we provide a primer on EcoTyper and demonstrate its use for the discovery and recovery of cell states and ecosystems from healthy and diseased tissue specimens.
View Article and Find Full Text PDFConcurrent administration of pembrolizumab with chemotherapy in untreated classic Hodgkin lymphoma (CHL) has not been studied previously. To investigate this combination, we conducted a single-arm study of concurrent pembrolizumab with AVD (doxorubicin, vinblastine, and dacarbazine; APVD) for untreated CHL. We enrolled 30 patients and met the primary safety end point with no observed significant treatment delays in the first 2 cycles.
View Article and Find Full Text PDFMachine learning (ML) is increasingly used in clinical oncology to diagnose cancers, predict patient outcomes, and inform treatment planning. Here, we review recent applications of ML across the clinical oncology workflow. We review how these techniques are applied to medical imaging and to molecular data obtained from liquid and solid tumor biopsies for cancer diagnosis, prognosis, and treatment design.
View Article and Find Full Text PDFMost relapsed/refractory large B cell lymphoma (r/rLBCL) patients receiving anti-CD19 chimeric antigen receptor (CAR19) T cells relapse. To characterize determinants of resistance, we profiled over 700 longitudinal specimens from two independent cohorts (n = 65 and n = 73) of r/rLBCL patients treated with axicabtagene ciloleucel. A method for simultaneous profiling of circulating tumor DNA (ctDNA), cell-free CAR19 (cfCAR19) retroviral fragments, and cell-free T cell receptor rearrangements (cfTCR) enabled integration of tumor and both engineered and non-engineered T cell effector-mediated factors for assessing treatment failure and predicting outcomes.
View Article and Find Full Text PDFPurpose: Clinical outcomes of patients with CNS lymphomas (CNSLs) are remarkably heterogeneous, yet identification of patients at high risk for treatment failure is challenging. Furthermore, CNSL diagnosis often remains unconfirmed because of contraindications for invasive stereotactic biopsies. Therefore, improved biomarkers are needed to better stratify patients into risk groups, predict treatment response, and noninvasively identify CNSL.
View Article and Find Full Text PDF