Publications by authors named "Asgeirsdottir S"

Spontaneous subarachnoid haemorrhage is characterized by extravasation of blood into the subarachnoid space without a preceding trauma. The leading cause is a ruptured intracranial aneurysm. Serious neurologic complications can occur, such as rebleeding, cerebral vasospasm and delayed cerebral ischemia.

View Article and Find Full Text PDF

In chronic inflammatory diseases the endothelium expresses mediators responsible for harmful leukocyte infiltration. We investigated whether targeted delivery of a therapeutic transgene that inhibits nuclear factor κB signal transduction could silence the proinflammatory activation status of endothelial cells. For this, an adenovirus encoding dominant-negative IκB (dnIκB) as a therapeutic transgene was employed.

View Article and Find Full Text PDF

Endothelial cells in different microvascular segments of the kidney have diverse functions and exhibit differential responsiveness to disease stimuli. The responsible molecular mechanisms are largely unknown. We previously showed that during hemorrhagic shock, VCAM-1 protein was expressed primarily in extraglomerular compartments of the kidney, while E-selectin protein was highly induced in glomeruli only (van Meurs M, Wulfert FM, Knol AJ, de Haes A, Houwertjes M, Aarts LPHJ, Molema G.

View Article and Find Full Text PDF

In non-phagocytic cells such as endothelial cells, processing of liposomes and subsequent release of drug content is often inefficient due to the absence of professional processing machinery, which limits pharmacological efficacy. We therefore developed a liposome based drug delivery system with superior intracellular release characteristics. The design was based on long circulating conventional liposomes that were formulated with a cationic amphiphile, 1-methyl-4-(cis-9-dioleyl)methyl-pyridinium-chlorid (SAINT-C18).

View Article and Find Full Text PDF

Applications of small-interfering RNA (siRNA) call for specific and efficient delivery of siRNA into particular cell types. We developed a novel, non-viral targeting system to deliver siRNA specifically into inflammation-activated endothelial cells. This was achieved by conjugating the cationic amphiphilic lipid SAINT to antibodies recognizing the inflammatory cell adhesion molecule E-selectin.

View Article and Find Full Text PDF

Both hemorrhagic shock and endotoxemia induce a pronounced vascular activation in the kidney which coincides with albuminuria and glomerular barrier dysfunction. We hypothesized that changes in Tie2, a vascular restricted receptor tyrosine kinase shown to control microvascular integrity and endothelial inflammation, underlie this loss of glomerular barrier function. In healthy murine and human kidney, Tie2 is heterogeneously expressed in all microvascular beds, although to different extents.

View Article and Find Full Text PDF

E-selectin-directed targeted drug delivery was analyzed in anti-glomerular basement membrane glomerulonephritis. Liposomes conjugated with anti-E-selectin antibodies (Ab(Esel) liposomes) were internalized by activated endothelial cells in vitro through E-selectin-mediated endocytosis. At the onset of glomerulonephritis in mice, E-selectin was expressed on glomerular endothelial cells, which resulted in homing of Ab(Esel) liposomes to glomeruli after intravenous administration.

View Article and Find Full Text PDF

Glomerulonephritis represents a group of renal diseases with glomerular inflammation as a common pathologic finding. Because of the underlying immunologic character of these disorders, they are frequently treated with glucocorticoids and cytotoxic immunosuppressive agents. Although effective, use of these compounds has limitations as a result of toxicity and systemic side effects.

View Article and Find Full Text PDF

Objectives: The essential role of erythrocytes as oxygen carriers is historically well established, but their function to aggregate and the consequences on the microcirculation is under debate. The pathogenic potential of low erythrocyte aggregation could be important for patients undergoing on-pump cardipopulmonary bypass. These patients are severely hemodiluted due to preoperative isovolemic hemodilution (IHD), circuit priming, and large fluid infusions perioperatively.

View Article and Find Full Text PDF

Endothelial cells actively participate in inflammatory events by regulating leukocyte recruitment via the expression of inflammatory genes such as E-selectin, VCAM-1, ICAM-1, IL-6, IL-8, and cyclooxygenase (COX)-2. In this study we showed by real-time RT-PCR that activation of human umbilical vein endothelial cells (HUVEC) by TNF-alpha and IL-1beta differentially affected the expression of these inflammatory genes. Combined treatment with TNF-alpha and IL-1beta resulted in nonadditive, additive, and even synergistic induction of expression of VCAM-1, IL-8, and IL-6, respectively.

View Article and Find Full Text PDF

Objective: Systemic endothelial dysfunction is a central feature in the pathophysiology of preeclampsia. Its cell biologic and molecular basis is poorly understood. One leading hypothesis argues that endothelial dysfunction is caused by (at present largely unknown) circulating factors released from the ischemic placenta.

View Article and Find Full Text PDF

In chronic inflammatory conditions, endothelial cells actively recruit immune cells from the circulation into the underlying tissue and participate in angiogenesis to support the continuous demand for oxygen and nutrients. They do so in response to activation by cytokines and growth factors such as tumour necrosis factor alpha (TNFalpha), interleukin-1 (IL-1), vascular endothelial growth factor (VEGF), and fibroblast growth factors (FGFs). Receptor triggering initiates intracellular signal transduction leading to activation of nuclear factor kappaB (NFkappaB), mitogen activated protein kinase (MAPK) activity, and nitric oxide and reactive oxygen species production, among others.

View Article and Find Full Text PDF

We prepared polyethylene glycol (PEG)-stabilized antisense oligonucleotide (ODN)/lipid particles from a lipid mixture including the positively charged amphiphile 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and anti-intercellular adhesion molecule 1 (ICAM-1) antisense ODN by an extrusion method in the presence of 40% ethanol. These particles were targeted to scavenger receptors on liver endothelial cells by means of covalently coupled polyanionized albumin. Two types of such targeted particles were prepared, one with the albumin coupled to a maleimide group attached to the particle's lipid bilayer and the other with the protein coupled to a maleimide group attached at the distal end of added bilayer-anchored PEG chains.

View Article and Find Full Text PDF

Background: Drug targeting to activated endothelial cells via E-selectin is currently being explored as a new approach to treat chronic inflammatory disorders. This approach uses E-selectin directed antibodies as carrier molecules to selectively deliver anti-inflammatory drugs into activated endothelial cells, thereby theoretically decreasing drug-associated side-effects. Therapeutic effects of developed drug targeting constructs will have to be tested in animal models of inflammation, in which E-selectin is expressed during the course of the disease.

View Article and Find Full Text PDF

To deliver selectively anti-inflammatory agents into activated endothelial cells, drug-targeting conjugates were developed. Dexamethasone (Dexa) was covalently linked to a monoclonal antibody specifically recognizing E-selectin, which is strongly upregulated in endothelial cells at inflammatory sites. In the present study, the pharmacological effects of this Dexa-mouse antihuman E-selectin antibody (H18/7) (Ab(hEsel)) conjugate were investigated and compared to the effects obtained by free Dexa in human umbilical vein endothelial cells.

View Article and Find Full Text PDF

Purpose: Drug targeting to activated endothelial cells is now being explored as a new approach to interfere with chronic inflammation. This study compares a dexamethasone-anti-E-selectin immunoconjugate (dexa-AbEsel) with anti-E-selectin immunoliposomes (AbEsel-immunoliposomes) that contain dexamethasone, regarding in vitro binding and internalization as well as in vivo accumulation in activated endothelial cells.

Methods: In vitro binding and internalization of dexa-AbEsel and the AbEsel-immunoliposomes into TNFalpha-activated HUVECs was studied using confocal laser scanning microscopy and radiolabeled compounds.

View Article and Find Full Text PDF

Laser dissection microscopy was applied to isolate endothelial cells from tumors obtained from mice treated with TNF-alpha. RNA integrity was demonstrated from whole sections and dissected cells after acetone fixation and hematoxylin staining. RT-PCR for GAPDH, CD31, VCAM-1, ICAM-1, and E-selectin was successfully performed on these samples.

View Article and Find Full Text PDF

Purpose: For selective inhibition of endothelial cell activation in chronic inflammation, we have developed a dexamethasone-anti-E-selectin immunoconjugate. The present study was performed to evaluate the cellular handling of this immunoconjugate by activated primary endothelial cells and to compare its drug delivery capacity with free dexamethasone.

Methods: The binding, uptake, and degradation of 125I-radiolabeled dexamethasone-anti-E-selectin immunoconjugate by TNFalpha-activated endothelial cells were studied for different time periods and at different concentrations, as well as in the presence of inhibitors for E-selectin binding and lysosomal degradation.

View Article and Find Full Text PDF

Endothelial cells play a pathological role in cancer and chronic inflammation and are therefore attractive targets for therapeutic intervention. This review focuses on endothelial cell specific drug targeting strategies for the treatment of these diseases. The cellular and molecular processes involved in the activation of endothelial cells in angiogenesis and inflammation will be reviewed.

View Article and Find Full Text PDF

Tumor blood vessels can be selectively targeted by RGD-peptides that bind to alpha(v)beta(3) integrin on angiogenic endothelial cells. By inhibiting the binding of these integrins to its natural ligands, RGD-peptides can serve as antiangiogenic therapeutics. We have prepared multivalent derivatives of the cyclic RGD-peptide c(RGDfK) by covalent attachment of the peptide to side chain amino groups of a protein.

View Article and Find Full Text PDF

In chronic inflammatory diseases, the endothelium is an attractive target for pharmacological intervention because it plays an important role in leukocyte recruitment. Hence, inhibition of endothelial cell activation and consequent leukocyte infiltration may improve therapeutic outcome in these diseases. We report on a drug targeting strategy for the selective delivery of the anti-inflammatory drug dexamethasone to activated endothelial cells, using an E-selectin-directed drug-Ab conjugate.

View Article and Find Full Text PDF

Aspergillus niger is known for its efficient excretion machinery. However, problems have often arisen in obtaining high amounts of heterologous proteins in the culture medium. Here we present a quick method using sandwiched colonies to evaluate transgenic strains for secretion of heterologous proteins.

View Article and Find Full Text PDF

Hydrophobins are small (length, about 100 +/- 25 amino acids), cysteine-rich, hydrophobic proteins that are present in large amounts in fungal cell walls, where they form part of the outermost layer (rodlet layer); sometimes, they can also be secreted into the medium. Different hydrophobins are associated with different developmental stages of a fungus, and their biological functions include protection of the hyphae against desiccation and attack by either bacterial or fungal parasites, hyphal adherence, and the lowering of surface tension of the culture medium to permit aerial growth of the hyphae. We identified and isolated a hydrophobin (fruit body hydrophobin 1 [Fbh1]) present in fruit bodies but absent in both monokaryotic and dikaryotic mycelia of the edible mushroom Pleurotus ostreatus.

View Article and Find Full Text PDF