Publications by authors named "Asensio J"

CH/π bonds are versatile elements for the construction of complex molecular architectures, thus playing key roles in many biomolecular recognition processes. Although seldom acknowledged, aromatic units are inherently bivalent and can participate in CH/π bonds through either face simultaneously, leading to the formation of stacking complexes. This sandwich-like arrangement is by far the most common in natural complexes and could potentially lead to negative cooperativity due to unfavorable polarization or electrostatic effects, especially when polarized CH fragments are involved.

View Article and Find Full Text PDF

Recent advances in cancer therapy have substantially increased survival rates among patients, yet the prolonged effect of current treatment regimens with anthracyclines (ACs) often include severe long-term complications, notably in the form of anthracycline-induced cardiotoxicity (AIC). Despite known associations between AC treatment and AIC, a comprehensive understanding of the underlying molecular pathways remains elusive. This gap is highlighted by the scarcity of reliable therapeutic interventions, with dexrazoxane being the sole FDA-approved drug to mitigate AIC risks.

View Article and Find Full Text PDF

Correction for 'Supramolecular nanocapsules as two-fold stabilizers of outer-cavity sub-nanometric Ru NPs and inner-cavity ultra-small Ru clusters' by Ernest Ubasart , , 2022, , 607-615, https://doi.org/10.1039/D1NH00677K.

View Article and Find Full Text PDF

Pancreatic cancer is one of the deadliest cancers worldwide, mainly due to late diagnosis. Therefore, there is an urgent need for novel diagnostic approaches to identify the disease as early as possible. We have developed a diagnostic assay for pancreatic cancer based on the detection of naturally occurring tumor associated autoantibodies against Mucin-1 (MUC1) using engineered glycopeptides on nanoparticle probes.

View Article and Find Full Text PDF

Background: Killip-Kimball classification has been used for estimating death risk in patients suffering acute myocardial infarction (AMI). Killip-Kimball stage IV corresponds to cardiogenic shock. However, the Society for Cardiovascular Angiography and Interventions (SCAI) classification provides a more precise tool to classify patients according to shock severity.

View Article and Find Full Text PDF

CH/π interactions are prevalent among aromatic complexes and represent invaluable tools for stabilizing well-defined molecular architectures. Their energy contributions are exceptionally sensitive to various structural and environmental factors, resulting in a context-dependent nature that has led to conflicting findings in the scientific literature. Consequently, a universally accepted hierarchy for aromatic CH/π interactions has remained elusive.

View Article and Find Full Text PDF

Enzymes of the GNAT (GCN5-relate N-acetyltransferases) superfamily are important regulators of cell growth and development. They are functionally diverse and share low amino acid sequence identity, making functional annotation difficult. In this study, we report the function and structure of a new ribosomal enzyme, N-acetyl transferase from Bacillus cereus (RimL), a protein that was previously wrongly annotated as an aminoglycosyltransferase.

View Article and Find Full Text PDF

Two subtypes of alpha (α)subunits, α1and α2, belonging to AP-2 complex have been described in the central nervous system (CNS). The specific role of each subtype is still unclear. In this study, we evaluated the expression and interaction with cell membranes of both subtypes in the postnatal developing cerebral cortex and cerebellum in two rat strains that display distinct developmental features.

View Article and Find Full Text PDF

NMR methods, and in particular ligand-based approaches, are among the most robust and reliable alternatives for binding detection and consequently, they have become highly popular in the context of hit identification and drug discovery. However, when dealing with DNA/RNA targets, these techniques face limitations that have precluded widespread application in medicinal chemistry. In order to expand the arsenal of spectroscopic tools for binding detection and to overcome the existing difficulties, herein we explore the scope and limitations of a strategy that makes use of a binding indicator previously unexploited by NMR: the perturbation of the ligand reactivity caused by complex formation.

View Article and Find Full Text PDF

Membrane dialysis is studied as a promising technique for partial dealcoholization of white wines. The performance of three membrane processes applied for the partial dealcoholization of white wines of the Verdejo variety has been studied in the present work. Combination of Nanofiltration with Pervaporation, single step Pervaporation and, finally, Dialysis, have been applied to white wines from same variety and different vintages.

View Article and Find Full Text PDF

The synthesis of metallic nanoparticles (MNP) with high surface area and controlled shape is of paramount importance to increase their catalytic performance. The detailed growing process of NP is mostly unknown and understanding the specific steps would pave the way for a rational synthesis of the desired MNP. Here we take advantage of the stabilization properties exerted by the tetragonal prismatic supramolecular nanocapsule 8·(BArF) to develop a synthetic methodology for sub-nanometric RuNP (0.

View Article and Find Full Text PDF

Despite the widespread use of transcriptomics technologies in toxicology research, acceptance of the data by regulatory agencies to support the hazard assessment is still limited. Fundamental issues contributing to this are the lack of reproducibility in transcriptomics data analysis arising from variance in the methods used to generate data and differences in the data processing. While research applications are flexible in the way the data are generated and interpreted, this is not the case for regulatory applications where an unambiguous answer, possibly later subject to legal scrutiny, is required.

View Article and Find Full Text PDF

The study of endoxylanases as catalysts to valorize hemicellulosic residues and to obtain glycosides with improved properties is a topic of great industrial interest. In this work, a GH10 β-1,4-endoxylanase (XynSOS), from the ascomycetous fungus , has been heterologously produced in , purified, and characterized. rXynSOS is a highly glycosylated monomeric enzyme of 53 kDa that contains a functional CBM1 domain and shows its optimal activity on azurine cross-linked (AZCL)-beechwood xylan at 70 °C and pH 5.

View Article and Find Full Text PDF

Cardiovascular diseases cause considerable health and economic burden, as they are the leading cause of disability and death in the western world. Inactivity, hypertension, obesity, diabetes, and smoking are among the classic risk factors for cardiovascular disease. From a pathophysiological point of view, the arteries of our body bear the harmful stimuli produced by these factors and respond to them with a series of intricate adaptive mechanisms.

View Article and Find Full Text PDF

Aromatic platforms are ubiquitous recognition motifs occurring in protein carbohydrate- binding domains (CBDs), RNA receptors and enzymes. They stabilize the glycoside/ receptor complexes by participating in stacking CH/π interactions with either the α- or β- face of the corresponding pyranose units. In addition, the role played by aromatic units in the stabilization of glycoside cationic transition states has started being recognized in recent years.

View Article and Find Full Text PDF

Herein we describe a new method for the determination of the surface temperature of magnetically heated nanoparticles in solution using the temperature dependency of the catalytic performances of iron carbide nanoparticles coated with ruthenium (FeC@Ru) for acetophenone hydrodeoxygenation. A correlation between nanoparticle surface temperature and magnetic field could be established. Very high surface temperatures could be estimated in different solvents, which were also found similar at a given magnetic field and well above some solvent boiling points.

View Article and Find Full Text PDF

Carbohydrates (glycans, saccharides, and sugars) are essential molecules in all domains of life. Research on glycoscience spans from chemistry to biomedicine, including material science and biotechnology. Access to pure and well-defined complex glycans using synthetic methods depends on the success of the employed glycosylation reaction.

View Article and Find Full Text PDF

Bimetallic nanoparticles (NPs) are complex systems with properties that far exceed those of the individual constituents. In particular, association of a noble metal and a first-row transition metal are attracting increasing interest for applications in catalysis, electrocatalysis, and magnetism, among others. Such objects display a rich structural chemistry thanks to their ability to form intermetallic phases, random alloys, or core-shell species.

View Article and Find Full Text PDF

Invited for the cover of this issue are Andrés G. Santana, Carlos González, Juan Luis Asensio and co-workers at Instituto de Química Orgánica General, Instituto de Química-Física Rocasolano and Universidad de La Rioja. The image depicts drug selectivity using a metaphor of an arrow hitting a target.

View Article and Find Full Text PDF

Introduction: Traumatic penetrating arteriovenous fistulas (AVFs) are very rare. The majority of these injuries occur secondary to penetrating trauma. Objectives of this study: review their incidence, clinical presentation, radiologic identification, management, complications and outcomes.

View Article and Find Full Text PDF

Targeting the interface between DNA quadruplex and duplex regions by small molecules holds significant promise in both therapeutics and nanotechnology. Herein, a new pharmacophore is reported, which selectively binds with high affinity to quadruplex-duplex junctions, while presenting a poorer affinity for G-quadruplex or duplex DNA alone. Ligands complying with the reported pharmacophore exhibit a significant affinity and selectivity for quadruplex-duplex junctions, including the one observed in the HIV-1 LTR-III sequence.

View Article and Find Full Text PDF

Background: Penetrating Carotid artery injuries are rarely encountered even in busy in urban Trauma Centers. Repair is preferred over ligation for Internal (IC) and Common Carotid (CC) arteries. To date, the use of temporary shunts correlated to neurological outcomes has not been reported.

View Article and Find Full Text PDF

The molecular basis of antibody 5E5, which recognizes the entire GalNAc unit as a primary epitope is disclosed. The antibody's contacts with the peptide are mostly limited to two residues, allowing it to show some degree of promiscuity. These findings open the door to the chemical design of peptide-mimetics for developing efficient anti-cancer vaccines and diagnostic tools.

View Article and Find Full Text PDF

Objective: Traumatic arteriovenous fistulas (AVFs) are rare. The vast majority occur secondary to penetrating injuries. High-output cardiac failure is a well-recognized serious complication of AVFs, associated with high morbidity and mortality.

View Article and Find Full Text PDF