The rhizocephalan Sacculina shiinoi sp. nov. parasitizes three species of Upogebia in Japan.
View Article and Find Full Text PDFFemale eelpouts (Zoarces viviparus L.) are exposed during early pregnancy to nominal concentrations of 100 microg/L of 4-tert-octylphenol (OP) or 0.5 microg/L of 17beta-estradiol (E2).
View Article and Find Full Text PDFBackground: Three kidney systems appear during vertebrate development: the pronephroi, mesonephroi and metanephroi. The pronephric duct is the first or primary ureter of these kidney systems. Its role as a key player in the induction of nephrogenic mesenchyme is well established.
View Article and Find Full Text PDFThe histology of the reproductive organs is studied in the protandric hermaphroditic Tellimya ferruginosa. In NW Europe the species reproduces from May through August. Sperm transfer takes place when mature testis follicles are transplanted to the gills or walls of the mantle cavity in recipient hermaphroditic or female bivalves.
View Article and Find Full Text PDFIt is essential to know the timing and process of normal gonadal differentiation and development in the specific species being investigated in order to evaluate the effect of exposure to endocrine-disrupting chemicals on these processes. In the present study gonadal sex differentiation and development were investigated in embryos of a viviparous species of marine fish, the eelpout, Zoarces viviparus, during their intraovarian development (early September to January) using light and electron microscopy. In both sexes of the embryos at the time of hatching (September 20) the initially undifferentiated paired bilobed gonad contains primordial germ cells.
View Article and Find Full Text PDFIn Japan Pseudopythina tsurumaru is an up to 10.8 mm-long commensal of the burrowing sea cucumber Protankyra bidentata, whereas in Hong Kong the same species is smaller and associated with the crab Hexapus anfractus, itself a commensal of P. bidentata.
View Article and Find Full Text PDFThe mitochondria-rich (mr) cell of amphibian skin epithelium is differentiated as a highly specialised pathway for passive transepithelial transport of chloride. The apical membrane of mr cells expresses several types of Cl(-) channels, of which the function of only two types has been studied in detail. (i) One type of channel is gated by voltage and external chloride concentration.
View Article and Find Full Text PDF