Publications by authors named "Ase Ballangrud"

Purpose: To incorporate uncertainty into dose accumulation for reirradiation.

Methods And Materials: The RAdiotherapy Dose Accumulation Routine (RADAR) script for the Eclipse treatment planning system (Varian Medical Systems) is described, and the voxel-wise ellipsoid search algorithm is introduced as a means of incorporating uncertainty. RADAR is first demonstrated on a test patient reirradiated to the spine, illustrating the effect of the uncertainty algorithm.

View Article and Find Full Text PDF

Background: Evaluation of treatment response for brain metastases (BMs) following stereotactic radiosurgery (SRS) becomes complex as the number of treated BMs increases. This study uses artificial intelligence (AI) to track BMs after SRS and validates its output compared with manual measurements.

Methods: Patients with BMs who received at least one course of SRS and followed up with MRI scans were retrospectively identified.

View Article and Find Full Text PDF

Background And Purpose: Patients with brain metastases (BMs) are surviving longer and returning for multiple courses of stereotactic radiosurgery. BMs are monitored after radiation with follow-up magnetic resonance (MR) imaging every 2-3 months. This study investigated whether it is possible to automatically track BMs on longitudinal imaging and quantify the tumor response after radiotherapy.

View Article and Find Full Text PDF

Purpose: End-to-end testing (E2E) is a necessary process for assessing the readiness of the stereotactic radiosurgery (SRS) program and annual QA of an SRS system according to the AAPM MPPG 9a. This study investigates the differences between using a new SRS MapCHECK (SRSMC) system and an anthropomorphic phantom film-based system in a large network with different SRS delivery techniques.

Methods And Materials: Three SRS capable Linacs (Varian Medical Systems, Palo Alto, CA) at three different regional sites were chosen to represent a hospital network, a Trilogy with an M120 multi-leaf collimator (MLC), a TrueBeam with an M120 MLC, and a TrueBeam Stx with an HD120 MLC.

View Article and Find Full Text PDF

Objective: Stereotactic biopsy is increasingly performed on brain metastases (BrMs) as improving cancer outcomes drive aggressive multimodality treatment, including laser interstitial thermal therapy (LITT). However, the tract recurrence (TR) risk is poorly defined in an era defined by focused-irradiation paradigms. As such, the authors aimed to define indications and adjuvant therapies for this procedure and evaluate the BrM-biopsy TR rate.

View Article and Find Full Text PDF

An increasing number of patients with multiple brain metastases are being treated with stereotactic radiosurgery (SRS). Manually identifying and contouring all metastatic lesions is difficult and time-consuming, and a potential source of variability. Hence, we developed a 3D deep learning approach for segmenting brain metastases on MR and CT images.

View Article and Find Full Text PDF

Background: Adjuvant stereotactic radiosurgery (SRS) improves the local control of resected brain metastases (BrM). However, the dependency of long-term outcomes on SRS timing relative to surgery remains unclear.

Methods: Retrospective analysis of patients treated with metastasectomy-plus-adjuvant SRS at Memorial Sloan Kettering Cancer Center (MSK) between 2013 and 2016 was conducted.

View Article and Find Full Text PDF

Purpose: To evaluate the accuracy of surface-guided radiotherapy (SGRT) in cranial patient setup by direct comparison between optical surface imaging (OSI) and cone-beam computed tomography (CBCT), before applying SGRT-only setup for conventional radiotherapy of brain and nasopharynx cancer.

Methods And Materials: Using CBCT as reference, SGRT setup accuracy was examined based on 269 patients (415 treatments) treated with frameless cranial stereotactic radiosurgery (SRS) during 2018-2019. Patients were immobilized in customized head molds and open-face masks and monitored using OSI during treatment.

View Article and Find Full Text PDF

Purpose: This study aimed to evaluate and compare different system calibration methods from a large cohort of systems to establish a commissioning procedure for surface-guided frameless cranial stereotactic radiosurgery (SRS) with intrafractional motion monitoring and gating. Using optical surface imaging (OSI) to guide non-coplanar SRS treatments, the determination of OSI couch-angle dependency, baseline drift, and gated-delivered-dose equivalency are essential.

Methods: Eleven trained physicists evaluated 17 OSI systems at nine clinical centers within our institution.

View Article and Find Full Text PDF

Purpose: To evaluate two three-dimensional (3D)/3D registration platforms, one two-dimensional (2D)/3D registration method, and one 3D surface registration method (3DS). These three technologies are available to perform six-dimensional (6D) registrations for image-guided radiotherapy treatment.

Methods: Fiducial markers were asymmetrically placed on the surfaces of an anthropomorphic head phantom (n = 13) and a body phantom (n = 8), respectively.

View Article and Find Full Text PDF

Objective: (1) Assess the feasibility of 13 N-ammonia cardiac PET (13 N-ammonia-PET) imaging in radiotherapy (RT) treatment position in locally-advanced breast cancer (LABC) patients. (2) Correlate pre-/post-RT changes in myocardial flow reserve (MFR) with the corresponding radiation heart dose.

Methods: Ten left-sided LABC patients undergoing Volumetric Modulated-Arc-Therapy (VMAT) to chest wall and regional lymph nodes underwent a rest/stress 13 N-ammonia-PET at baseline and (median) 13 months post-RT.

View Article and Find Full Text PDF

Purpose: The implementation and evaluation of an in-house developed geometry optimization (GO) software are described. The GO script provides optimal lesion clustering, isocenter placement, and collimator angle of each arc for cranial multi-lesion stereotactic radiosurgery (SRS) volumetric modulated arc therapy (VMAT) planning.

Materials And Methods: An Eclipse-plugin program was developed to facilitate automatic plan geometry generation for multiple metastases SRS VMAT plans.

View Article and Find Full Text PDF

Spine stereotactic body radiation therapy frequently involves the delivery of high doses to targets in proximity to the spinal cord; thus, the radiation must be delivered with great spatial accuracy. Monitoring for large shifts in target and cord position that might occur during dose delivery is a challenge for clinics equipped with a conventional C-arm Linac. Treatment must be halted, then imaging and registration must be done to determine whether a significant shift has occurred.

View Article and Find Full Text PDF

Purpose: Multibeam intensity modulated radiation therapy (IMRT) enhances the therapeutic index by increasing the dosimetric coverage of the targeted tumor tissues while minimizing volumes of adjacent organs receiving high doses of RT. The tradeoff is that a greater volume of lung is exposed to low doses of RT, raising concern about the risk of radiation pneumonitis (RP).

Methods And Materials: Between July 2010 and January 2013, patients with node-positive breast cancer received inverse-planned, multibeam IMRT to the breast or chest wall and regional nodes, including the internal mammary nodes (IMNs).

View Article and Find Full Text PDF

Locally advanced breast cancer patients with expander or implant reconstructions who require comprehensive postmastectomy radiotherapy (PMRT) can pose unique treatment planning challenges. Traditional 3D conformal radiation techniques often result in large dose inhomogeneity throughout the treatment volumes, inadequate target coverage, or excessive normal tissue doses. We have developed a volumetric modulated arc therapy (VMAT) planning technique without entering through the ipsilateral arm that produced adequate target volume coverage, excellent homogeneity throughout the target volume, and acceptable doses to the normal structures.

View Article and Find Full Text PDF

Background And Purpose: This study summarizes the cranial stereotactic radiosurgery (SRS) volumetric modulated arc therapy (VMAT) procedure at our institution.

Materials And Methods: Volumetric modulated arc therapy plans were generated for 40 patients with 188 lesions (range 2-8, median 5) in Eclipse and treated on a TrueBeam STx. Limitations of the custom beam model outside the central 2.

View Article and Find Full Text PDF

Background: Brain metastases are common in patients with metastatic melanoma. With increasing numbers of melanoma patients on anti-PD-1 therapy, we sought to evaluate the safety and initial response of brain metastases treated with concurrent pembrolizumab and radiation therapy.

Methods: From an institutional database, we retrospectively identified patients with melanoma brain metastases treated with radiation therapy (RT) who received concurrent pembrolizumab.

View Article and Find Full Text PDF

For left-sided postmastectomy patients requiring chest wall plus comprehensive nodal irradiation, sometimes traditional techniques such as partial wide tangents or electron/tangents combination are not feasible due to abnormal chest wall contour or heart position or unusually wide excision scar. We developed electron chest wall irradiation technique using Electron Monte Carlo (EMC) dose algorithm that will achieve heart sparing with acceptable ipsilateral lung dose, minimal contralateral lung, and breast dose. Ten left-sided postmastectomy patients with very challenging anatomy were selected for this dosimetry study.

View Article and Find Full Text PDF

Purpose: To establish the maximum tolerated dose of a 3-fraction hypofractionated stereotactic reirradiation schedule when delivered with concomitant bevacizumab to treat recurrent high-grade gliomas.

Methods And Materials: Patients with recurrent high-grade glioma with Karnofsky performance status ≥60, history of standard fractionated initial radiation, tumor volume at recurrence ≤40 cm, and absence of brainstem or corpus callosum involvement were eligible. A standard 3+3 phase 1 dose escalation trial design was utilized, with dose-limiting toxicities defined as any grade 3 to 5 toxicities possibly, probably, or definitely related to radiation.

View Article and Find Full Text PDF

Background And Purpose: Hypofractionated conformal radiotherapy (hfCRT) is used for larger brain metastases or metastases near critical structures. We investigated hfCRT outcomes for newly diagnosed brain metastases.

Materials And Methods: We identified 195 patients with 1-3 brain metastases who underwent 5×6Gy hfCRT for 231 lesions from 2007 to 2013.

View Article and Find Full Text PDF

Radionecrosis is a well-characterized effect of stereotactic radiosurgery (SRS) and is occasionally associated with serious neurologic sequelae. Here, we investigated the incidence of and clinical variables associated with the development of radionecrosis and related radiographic changes after SRS for brain metastases in a cohort of patients with long-term follow up. 271 brain metastases treated with single-fraction linear accelerator-based SRS were analyzed.

View Article and Find Full Text PDF

The purpose of this study was to compare two clinical immobilization systems for intracranial frameless stereotactic radiosurgery (fSRS) under the same clinical procedure using cone-beam computed tomography (CBCT) for setup and video-based optical surface imaging (OSI) for initial head alignment and intrafractional motion monitoring. A previously established fSRS procedure was applied using two intracranial immobilization systems: PinPoint system (head mold and mouthpiece) and Freedom system (head mold and open face mask). The CBCT was used for patient setup with four degrees of freedom (4DOF), while OSI was used for 6DOF alignment prior to CBCT, post-CBCT setup verification at all treatment couch angles (zero and nonzero), and intrafractional motion monitoring.

View Article and Find Full Text PDF

To provide a comprehensive assessment of patient setup accuracy in 6 degrees of freedom (DOFs) using 2-dimensional/3-dimensional (2D/3D) image registration with on-board 2-dimensional kilovoltage (OB-2 DkV) radiographic images, we evaluated cranial, head and neck (HN), and thoracic and abdominal sites under clinical conditions. A fast 2D/3D image registration method using graphics processing unit GPU was modified for registration between OB-2 DkV and 3D simulation computed tomography (simCT) images, with 3D/3D registration as the gold standard for 6 DOF alignment. In 2D/3D registration, body roll rotation was obtained solely by matching orthogonal OB-2 DkV images with a series of digitally reconstructed radiographs (DRRs) from simCT with a small rotational increment along the gantry rotation axis.

View Article and Find Full Text PDF

Purpose: To evaluate local control after surgical resection and postoperative stereotactic radiosurgery (SRS) for brain metastases.

Methods And Materials: A total of 49 patients (50 lesions) were enrolled and available for analysis. Eligibility criteria included histologically confirmed malignancy with 1 or 2 intraparenchymal brain metastases, age≥18 years, and Karnofsky performance status (KPS)≥70.

View Article and Find Full Text PDF

To determine if the presence of bilateral implants, in addition to other anatomic and treatment-related variables, affects coverage of the target volume and dose to the heart and lung in patients receiving postmastectomy radiation therapy (PMRT). A total of 197 consecutive women with breast cancer underwent mastectomy and immediate tissue expander (TE) placement, with or without exchange for a permanent implant (PI) before radiation therapy at our center. PMRT was delivered with 2 tangential beams + supraclavicular lymph node field (50Gy).

View Article and Find Full Text PDF