The zebrafish () has emerged as a valuable model for studying host-pathogen interactions due to its unique combination of characteristics. These include extensive sequence and functional conservation with the human genome, optical transparency in larvae that allows for high-resolution visualization of host cell-microbe interactions, a fully sequenced and annotated genome, advanced forward and reverse genetic tools, and suitability for chemical screening studies. Despite anatomical differences with humans, the zebrafish model has proven instrumental in investigating immune responses and human infectious diseases.
View Article and Find Full Text PDFNitric oxide (NO) synthesis, signaling, and scavenging is associated to relevant physiological and pathological events. In all tissues and organs, NO levels and related functions are regulated at different levels, with heme proteins playing pivotal roles. Here, we focus on the structural changes related to the different binding modes of NO to heme-Fe(II), as well as the modulatory effects of this diatomic messenger on heme-protein functions.
View Article and Find Full Text PDFNitrobindins (Nbs) are all-β-barrel heme proteins present along the evolutionary ladder. They display a highly solvent-exposed ferric heme group with the iron atom being coordinated by the proximal His residue and a water molecule at the distal position. Ferric nitrobindins (Nb(III)) play a role in the conversion of toxic peroxynitrite (ONOO) to harmless nitrate, with the value of the second-order rate constant being similar to those of most heme proteins.
View Article and Find Full Text PDFMost hemoproteins display an all-α-helical fold, showing the classical three on three (3/3) globin structural arrangement characterized by seven or eight α-helical segments that form a sandwich around the heme. Over the last decade, a completely distinct class of heme-proteins called nitrobindins (Nbs), which display an all-β-barrel fold, has been identified and characterized from both structural and functional perspectives. Nbs are ten-stranded anti-parallel all-β-barrel heme-proteins found across the evolutionary ladder, from bacteria to Homo sapiens.
View Article and Find Full Text PDFNitrobindins (Nbs) represent an evolutionary conserved all-β-barrel heme-proteins displaying a highly solvent-exposed heme-Fe(III) atom, coordinated by a proximal His residue. Interestingly, even if the distal side is exposed to the solvent, the value of the second order rate constants for ligand binding to the ferrous derivative is almost one order of magnitude lower than those reported for myoglobins (Mbs). Noteworthy, nitric oxide binding to the sixth coordination position of the heme-Fe(II)-atom causes the cleavage or the severe weakening of the proximal His-Fe(II) bond.
View Article and Find Full Text PDFNO binding to horse heart cytochrome c (hhcyt c) has been investigated as a function of pH by both optical absorption and EPR spectroscopies. Lowering pH from 3.5 to 1.
View Article and Find Full Text PDFNitrobindins (Nbs) are all-β-barrel heme proteins spanning from bacteria to . They inactivate reactive nitrogen species by sequestering NO, converting NO to HNO, and promoting peroxynitrite isomerization to NO. Here, the nitrite reductase activity of Nb(II) from (-Nb(II)), (-Nb(II)), (-Nb(II)), and (-Nb(II)) is reported.
View Article and Find Full Text PDFHeme is the reactive center of several metal-based proteins that are involved in multiple biological processes. However, free heme, defined as the labile heme pool, has toxic properties that are derived from its hydrophobic nature and the Fe-atom. Therefore, the heme concentration must be tightly controlled to maintain cellular homeostasis and to avoid pathological conditions.
View Article and Find Full Text PDFObjectives: Cyclodextrins (CDs) play a pivotal role in the controlled release of drugs; however, their ability to gradually release drugs is here interrogated: can cyclodextrins, even those that form strong inclusion complexes, sustain a prolonged release of drugs?
Methods: An original chromatographic approach was developed and accordingly we classified and determined drugs that form the most stable inclusion complexes with cyclodextrins. β-CD and hydroxypropyl-β-CD (HP-β-CD) were coupled to pullulan (Pul) microspheres and packed into a chromatographic column. Then, different drugs or model compounds were eluted, and values of the retention time () were determined.
Nitric oxide (NO) is an essential signaling molecule present in most living organisms including bacteria, fungi, plants, and animals. NO participates in a wide range of biological processes including vasomotor tone, neurotransmission, and immune response. However, NO is highly reactive and can give rise to reactive nitrogen and oxygen species that, in turn, can modify a broad range of biomolecules.
View Article and Find Full Text PDFNitrobindins (Nbs) are all-β-barrel heme proteins and are present in prokaryotes and eukaryotes. Although their function(s) is still obscure, Nbs trap NO and inactivate peroxynitrite. Here, the kinetics of peroxynitrite scavenging by ferric Nb (-Nb(III)) in the absence and presence of CO is reported.
View Article and Find Full Text PDFNitrobindins (Nbs) are all-β-barrel heme-proteins present in all the living kingdoms. Nbs inactivate reactive nitrogen species by sequestering NO, converting NO to HNO, and isomerizing peroxynitrite to NO and NO. Here, the spectroscopic characterization of ferric Danio rerio Nb (Dr-Nb(III)) and NO scavenging through the reductive nitrosylation of the metal center are reported, both processes being relevant for the regulation of blood flow in fishes through poorly oxygenated tissues, such as retina.
View Article and Find Full Text PDFNitrobindins (Nbs) are all-β-barrel heme-proteins present in prokaryotes and eukaryotes. Although the physiological role(s) of Nbs are still unclear, it has been postulated that they are involved in the NO/O metabolism, which is particularly relevant in fishes for the oxygen supply. Here, the reactivity of ferrous Danio rerio Nb (Dr-Nb(II)) towards NO has been investigated from the spectroscopic and kinetic viewpoints and compared with those of Mycobacterium tuberculosis Nb, Arabidopsis thaliana Nb, Homo sapiens Nb, and Equus ferus caballus myoglobin.
View Article and Find Full Text PDFAmong the thyroid cancers, papillary thyroid cancer (PTC) accounts for 90% of the cases. In addition to the necessity to identify new targets for PTC treatment, early diagnosis and management are highly demanded. Previous data indicated that the multivariate statistical analysis of the Raman spectra allows the discrimination of healthy tissues from PTC ones; this is characterized by bands typical of carotenoids.
View Article and Find Full Text PDFSerum albumin (SA) is the most abundant protein in plasma and represents the main carrier of endogenous and exogenous compounds. Several evidence supports the notion that SA binds single and double-stranded deoxynucleotides and ribonucleotides at two sites, with values of the dissociation equilibrium constant (i.e.
View Article and Find Full Text PDFHemoglobin and myoglobin are generally taken as molecular models of all-α-helical heme-proteins. On the other hand, nitrophorins and nitrobindins (Nb), which are arranged in 8 and 10 β-strands, respectively, represent the molecular models of all-β-barrel heme-proteins. Here, kinetics of the hydroxylamine- (HA-) mediated oxidation of ferrous Mycobacterium tuberculosis, Arabidopsis thaliana, and Homo sapiens nitrobindins (Mt-Nb(II), At-Nb(II), and Hs-Nb(II), respectively), at pH 7.
View Article and Find Full Text PDFNeuroglobin (Ngb), the third member of the globin family, was discovered in human and murine brains in 2000. This monomeric globin is structurally similar to myoglobin (Mb) and hemoglobin (Hb) α and β subunits, but it hosts a bis-histidyl six-coordinated heme-Fe atom. Therefore, the heme-based reactivity of Ngb is modulated by the dissociation of the distal HisE7-heme-Fe bond, which reflects in turn the redox state of the cell.
View Article and Find Full Text PDFThalassemias (α, β, γ, δ, δβ, and εγδβ) are the most common genetic disorders worldwide and constitute a heterogeneous group of hereditary diseases characterized by the deficient synthesis of one or more hemoglobin (Hb) chain(s). This leads to the accumulation of unstable non-thalassemic Hb chains, which precipitate and cause intramedullary destruction of erythroid precursors and premature lysis of red blood cells (RBC) in the peripheral blood. Non-thalassemic Hbs display high oxygen affinity and no cooperativity.
View Article and Find Full Text PDFHuman serum albumin (HSA) is the most abundant protein in plasma, contributing actively to oncotic pressure maintenance and fluid distribution between body compartments. HSA acts as the main carrier of fatty acids, recognizes metal ions, affects pharmacokinetics of many drugs, provides the metabolic modification of some ligands, renders potential toxins harmless, accounts for most of the anti-oxidant capacity of human plasma, and displays esterase, enolase, glucuronidase, and peroxidase (pseudo)-enzymatic activities. HSA-based catalysis is physiologically relevant, affecting the metabolism of endogenous and exogenous compounds including proteins, lipids, cholesterol, reactive oxygen species (ROS), and drugs.
View Article and Find Full Text PDF(CD) represents a major public healthcare-associated infection causing significant morbidity and mortality. The pathogenic effects of CD are mainly caused by the release of two exotoxins into the intestine: toxin A (TcdA) and toxin B (TcdB). CD infection (CDI) can also cause toxemia, explaining the systemic complications of life-threatening cases.
View Article and Find Full Text PDFThe O-mediated oxidation of all-β-barrel ferrous nitrosylated nitrobindin from Arabidopsis thaliana (At-Nb(II)-NO), Mycobacterium tuberculosis (Mt-Nb(II)-NO), and Homo sapiens (Hs-Nb(II)-NO) to ferric derivative (At-Nb(III), Mt-Nb(III), and Hs-Nb(III), respectively) has been investigated at pH 7.0 and 20.0 °C.
View Article and Find Full Text PDF