Non-communicable diseases (NCD) are associated with inflammation and oxidative stress which is further associated with omega-6 (ω6) and omega-3 (ω3) fatty acid (FA) imbalance favoring ω6 FA. By improving ω3 FA consumption, this imbalance can be altered to control NCD. Previously we have reported blends of flaxseed oil (FSO, ω3 FA) with palm olein (PO) or coconut oil (CO) were thermo-oxidatively stable with good storage stability and could improve ω6:ω3 ratio in cell lines.
View Article and Find Full Text PDFThe shaping of covalent organic frameworks (COFs) from non-processible powder forms into applicable architectures with additional functionality remains a challenge. Using pre-electrospun polymer fibers as a sacrificial template, herein, we report a green synthesis of an architecture in the form of COF hollow fibers with an inner layer of peroxidase-like iron oxide nanoparticles as a catalytic material. When compared to peroxidase-like pristine iron oxide nanoparticles, these COF hollow fibers demonstrate higher catalytic breakdown of crystal violet due to their peroxidase-like activity via advanced oxidation process.
View Article and Find Full Text PDFContext: Clinical study for immunity.
Aims: The present study aimed to assess the effect of proprietary polyherbal formulation (PPHF), labelled as Kofol immunity tablets (KIT) on innate and adaptive immune responses in healthy individuals, on the backdrop of COVID-19 pandemic.
Settings And Design: Single-blind, randomized, placebo-controlled, exploratory study in institutional setting.
J Food Sci Technol
February 2022
The objective of the study was to develop the oil blend with improved omega-6 to omega-3 fatty acid ratio (ω-6:ω-3) with good oxidative and thermal stability. Flaxseed oil and palm olein were selected for the blending. Flaxseed oil is rich in anti-inflammatory omega-3 fatty acid (ω-3 FA) but is oxidatively very unstable.
View Article and Find Full Text PDFObjective: Triple-negative breast cancer (TNBC) is highly metastatic, and there is an urgent unmet need to develop novel therapeutic strategies leading to the new drug discoveries against metastasis. The transforming growth factor-β (TGF-β) is known to promote the invasive and migratory potential of breast cancer cells through induction of epithelial-mesenchymal transition (EMT) via the ERK/NF-κB/Snail signaling pathway, leading to breast cancer metastasis. Targeting this pathway to revert the EMT would be an attractive, novel therapeutic strategy to halt breast cancer metastasis.
View Article and Find Full Text PDFBackground: To enhance their own survival, tumor cells can manipulate their microenvironment through remodeling of the extra cellular matrix (ECM). The urokinase-type plasminogen activator (uPA) system catalyzes plasmin production which further mediates activation of matrix metalloproteinases (MMPs) and plays an important role in breast cancer invasion and metastasis through ECM remodeling. This provides a potential target for therapeutic intervention of breast cancer treatment.
View Article and Find Full Text PDFThe mTOR pathway is often upregulated in cancer and thus intensively pursued as a target to design novel anticancer therapies. Approved and emerging drugs targeting the mTOR pathway have positively affected the clinical landscape. Recently, activin receptor-like kinase 1 (ALK1), belonging to the TGFβ receptor family, has been reported as an emerging target for antiangiogenic cancer therapy.
View Article and Find Full Text PDFBackground: Lung cancer is the major cause of cancer-related deaths and many cases of Non Small Cell Lung Cancer (NSCLC), a common type of lung cancer, have frequent genetic/oncogenic activation of EGFR, KRAS, PIK3CA, BRAF, and others that drive tumor growth. Some patients though initially respond, but later develop resistance to erlotinib/gefitinib with no option except for cytotoxic therapy. Therefore, development of novel targeted therapeutics is imperative to provide improved survival benefit for NSCLC patients.
View Article and Find Full Text PDFUsing a validated explant model of in vitro cartilage damage, the effects of aqueous extracts of Withania somnifera (Ashwagandha) root and glucosamine sulphate (GlcS) were tested on the levels of nitric oxide (NO) and glycosaminoglycans (GAGs) secreted by knee cartilage from chronic osteoarthritis (OA) patients. W. somnifera extracts significantly decreased NO release by explants from one subset of patients (antiinflammatory response) and significantly increased levels of NO and GAGs released by explants from the second subset ('non-responders').
View Article and Find Full Text PDF