Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease, which selectively affects motor neurons throughout the central nervous system. The extensive distribution of motor neurons is an obstacle to applying cell transplantation therapy for the treatment of ALS. To overcome this problem, we developed a cell transplantation method via the fourth cerebral ventricle in mice.
View Article and Find Full Text PDFGlutamatergic and GABAergic neurons mediate much of the excitatory and inhibitory neurotransmission, respectively, in the vertebrate nervous system. The process by which developing neurons select between these two cell fates is poorly understood. Here we show that the homeobox genes Tlx3 and Tlx1 determine excitatory over inhibitory cell fates in the mouse dorsal spinal cord.
View Article and Find Full Text PDFMembers of the GATA transcription factor gene family have been implicated in a variety of developmental processes, including that of the vertebrate central nervous system. However, the role of GATA proteins in spinal cord development remains unresolved. In this study, we investigated the expression and function of two GATA proteins, GATA2 and GATA3, in the developing chick spinal cord.
View Article and Find Full Text PDFWe review investigations that have lead to a model of how the ventral spinal cord of higher vertebrate embryos is patterned during development. Central to this model is the secreted morphogen protein, Sonic hedgehog. There is now considerable evidence that this molecule acts in a concentration-dependent manner to direct the development of the spinal cord.
View Article and Find Full Text PDF