Excessive hydrogen sulfide (HS) production from gut microbial metabolism may have clinically important relevance in the pathogenesis of gut disorders, including ulcerative colitis. However, little is known regarding factors that alter its production. Using a newly-designed in vitro gas-profiling technology, the study aimed to verify real-time HS measurement reproducibility and thereafter, assess its production following exposure to dietary factors and 5-aminosalicylate acid (5-ASA).
View Article and Find Full Text PDFNitrogen dioxide (NO2) is a gas species that plays an important role in certain industrial, farming, and healthcare sectors. However, there are still significant challenges for NO2 sensing at low detection limits, especially in the presence of other interfering gases. The NO2 selectivity of current gas-sensing technologies is significantly traded-off with their sensitivity and reversibility as well as fabrication and operating costs.
View Article and Find Full Text PDFThe biological and clinical significance of the human gut microbiome is currently attracting worldwide attention. While rRNA and DNA technologies led to a quantum leap in our understanding of the numbers and types of gut microorganisms, much less is known about these microorganisms' activity in situ and in real time. Accurately measuring their byproducts, including intestinal gases, may offer unique biomarkers for specific gut microbiota, accelerating our understanding of the relationships among intestinal gases, the metabolic activity of the gut microbiome, and human health states.
View Article and Find Full Text PDF