Publications by authors named "Asaf Paris-Mandoki"

A fundamental parameter to determine how electromagnetic waves interfere is their relative phase, and achieving a fine control over it enables a wide range of interferometric applications. Existing phase control methods rely on modifying the optical path length either by changing the path followed by the light or by altering the thickness or index of refraction of an optical element in the setup. In this Letter, we present a novel, to the best of our knowledge, method, based on acousto-optic modulators (AOMs), which allows adjusting the phase by shifting the frequency of the light in a segment of its path.

View Article and Find Full Text PDF

We study the dissipative propagation of quantized light in interacting Rydberg media under the conditions of electromagnetically induced transparency. Rydberg blockade physics in optically dense atomic media leads to strong dissipative interactions between single photons. The regime of high incoming photon flux constitutes a challenging many-body dissipative problem.

View Article and Find Full Text PDF

We report on the experimental observation of nontrivial three-photon correlations imprinted onto initially uncorrelated photons through an interaction with a single Rydberg superatom. Exploiting the Rydberg blockade mechanism, we turn a cold atomic cloud into a single effective emitter with collectively enhanced coupling to a focused photonic mode which gives rise to clear signatures in the connected part of the three-body correlation function of the outgoing photons. We show that our results are in good agreement with a quantitative model for a single, strongly coupled Rydberg superatom.

View Article and Find Full Text PDF