Publications by authors named "Asa Motiei"

Fossil-made polymers harbor unique bacterial assemblages, and concerns have been raised that ingested microplastic may affect the consumer gut microbiota and spread pathogens in animal populations. We hypothesized that in an ecotoxicity assay with a mixture of polystyrene (PS) and clay: (1) microbiome of the test animals inoculates the system with bacteria; (2) relative contribution of PS and the total amount of suspended solids (SS) select for specific bacterial communities; and (3) particle aggregation is affected by biofilm community composition, with concomitant effects on the animal survival. Mixtures of PS and clay at different concentrations of SS (10, 100, and 1000 mg/L) with a varying microplastics contribution (%PS; 0-80%) were incubated with , whose microbiome served as an inoculum for the biofilms during the exposure.

View Article and Find Full Text PDF

Assessment of microplastic impacts in biota is challenging due to the complex behavior of the test particles and their interactions with other particulates, including microorganisms, in the environment. To disentangle responses to microplastic exposure from those to other suspended solids, both microplastic and natural particles must be present in the test system. We evaluated how microplastic, non-plastic particles, and biofilms interacted in their effects on survivorship using acute toxicity assay with Daphnia magna.

View Article and Find Full Text PDF

It is a common view that an organism's microbiota has a profound influence on host fitness; however, supporting evidence is lacking in many organisms. We manipulated the gut microbiome of Daphnia magna by chronic exposure to different concentrations of the antibiotic Ciprofloxacin (0.01-1 mg L-1), and evaluated whether this affected the animals fitness and antioxidant capacity.

View Article and Find Full Text PDF

In aquatic ecosystems, microplastics are a relatively new anthropogenic substrate that can readily be colonized by biofilm-forming organisms. To examine the effects of substrate type on microbial community assembly, we exposed ambient Baltic bacterioplankton to plastic substrates commonly found in marine environments (polyethylene, polypropylene and polystyrene) as well as native (cellulose) and inert (glass beads) particles for 2 weeks under controlled conditions. The source microbial communities and those of the biofilms were analyzed by Illumina sequencing of the 16S rRNA gene libraries.

View Article and Find Full Text PDF

A new cyclic hexapeptide, cyclo-(Gly-Leu-Val-IIe-Ala-Phe), named bacicyclin (1), was isolated from a marine Bacillus sp. strain associated with Mytilus edulis. The sequences of the amino acid building blocks of the cyclic peptide and its structure were determined by 1D- and 2D-NMR techniques.

View Article and Find Full Text PDF