Insulin-like growth factor-1 (IGF-1) is essential for normal brain development and regulates processes of vascular maturation. The pathogenesis of intraventricular hemorrhage (IVH) relates to the fragility of the immature capillaries in the germinal matrix, and its inability to resist fluctuations in cerebral blood flow. In this work, using different experimental setups, we aimed to (i) establish an optimal time-point for glycerol-induction of IVH in relation to time-point of recombinant human (rh) IGF-1/rhIGFBP-3 administration, and (ii) to evaluate the effects of a physiologic replacement dose of rhIGF-1/rhIGFBP-3 on prevention of IVH and survival in the preterm rabbit pup.
View Article and Find Full Text PDFNeonates with critical congenital heart defects undergoing open-heart surgery on cardiopulmonary bypass circulation are at risk for white matter brain injury. This article reports on pre- and postoperative plasma concentrations of brain injury markers glial fibrillary acidic protein (GFAP), neurofilament light (NfL) and Tau, and their respective associations with white matter lesions detected on postoperatively performed brain MRI. Forty term newborns with isolated critical congenital heart defects were included in a prospective observational study.
View Article and Find Full Text PDFExposure to circulating cell-free hemoglobin is a ubiquitous feature of open-heart surgery on cardiopulmonary bypass circulation. This study aims to determine the origins and dynamics of circulating cell-free hemoglobin and its major scavenger proteins haptoglobin and hemopexin during neonatal cardiopulmonary bypass. Forty neonates with an isolated critical congenital heart defect were included in a single-center prospective observational study.
View Article and Find Full Text PDFObjective: To examine the prevalence of dysnatraemias among children admitted for paediatric surgery before and after a change from hypotonic to isotonic intravenous maintenance fluid therapy.
Design: Retrospective consecutive time series intervention study.
Setting: Paediatric surgery ward at the Children's Hospital in Lund, during a 7-year period, 2010-2017.
Neonates born with critical congenital heart defects are at risk of diffuse white matter injuries and neurodevelopmental impairments. This study aimed to determine the impact of circulating cell-free hemoglobin and hyperoxia, both present during cardiopulmonary bypass circulation, on white matter brain development. Postnatal day 6 rat pups were injected intraperitoneally with cell-free Hb or vehicle and exposed to hyperoxia (fiO2 = 0.
View Article and Find Full Text PDFBackground: Infants with congenital heart defects (CHD) are at risk for white matter brain injury. This novel rat pup model characterizes the systemic effects of intravasal cell-free hemoglobin and hyperoxia, hypothesizing that immature endogenous scavenging systems relate to increased vulnerability to conditions present during cardiopulmonary bypass (CPB).
Methods: Plasma pharmacokinetics of cell-free human hemoglobin (Hb) was determined after intraperitoneal (i.