Dunaliella salina algae are trapped and studied using dual-fiber optical tweezers based on nano-imprinted Fresnel lenses. Different forms of cyclic motion of living algae inside the optical trap are observed and analyzed. A characteristic periodic motion in the 0-35 Hz frequency region reflects the algal flagella activity and is used to estimate the algal vitality, by photomovement.
View Article and Find Full Text PDFWe report a study of the optical properties of silicon moth-eye structures using a custom-made fully automated broadband spectroscopic reflectometry system (goniometer). This measurement system is able to measure specular reflectance as a function of wavelength, polar incidence angle and azimuth orientation angle, from normal to near-parallel polar incidence angle. The system uses a linear polarized broadband super-continuum laser light source.
View Article and Find Full Text PDFIn this report, helium ion microscopy (HIM) is used to study the micro and nanostructures responsible for structural color in the wings of two species of Lepidotera from the Papilionidae family: Papilio ulysses (Blue Mountain Butterfly) and Parides sesostris (Emerald-patched Cattleheart). Electronic charging of uncoated scales from the wings of these butterflies, due to the incident ion beam, is successfully neutralized, leading to images displaying a large depth-of-field and a high level of surface detail, which would normally be obscured by traditional coating methods used for scanning electron microscopy (SEM). The images are compared with those from variable pressure SEM, demonstrating the superiority of HIM at high magnifications.
View Article and Find Full Text PDF