J Neurol Neurosurg Psychiatry
November 2023
Background: Neurodegeneration in multiple sclerosis (MS) affects the visual system but dynamics and pathomechanisms over several years especially in primary progressive MS (PPMS) are not fully understood.
Methods: We assessed longitudinal changes in visual function, retinal neurodegeneration using optical coherence tomography, MRI and serum NfL (sNfL) levels in a prospective PPMS cohort and matched healthy controls. We investigated the changes over time, correlations between outcomes and with loss of visual function.
Multiple sclerosis (MS) is an inflammatory and demyelinating disease which leads to impairment in several functional systems including cognition. Alteration of brain networks is linked to disability and its progression. However, results are mostly cross-sectional and yet contradictory as putative adaptive and maladaptive mechanisms were found.
View Article and Find Full Text PDFBackground And Purpose: Extent and dynamic of neurodegeneration in progressive multiple sclerosis (MS) might be reflected by global and regional brain perfusion, an outcome at the intercept between structure and function. Here, we provide a first insight into the evolution of brain perfusion and its association with disability in primary progressive MS (PPMS) over several years.
Methods: Seventy-seven persons with PPMS were followed over up to 5 years.
Multiple Sclerosis (MS) is the most common chronic inflammatory and neurodegenerative disease of the central nervous system (CNS), which can lead to severe cognitive impairment over time. Magnetic resonance imaging (MRI) is currently the best available biomarker to track MS pathophysiology in vivo and examine the link to clinical disability. However, conventional MRI metrics have limited sensitivity and specificity to detect direct associations between symptoms and their underlying CNS substrates.
View Article and Find Full Text PDF