We describe the fabrication and electrical characterization of all-silicon electrode devices to study the electronic properties of thin films of silicon nanocrystals (SiNCs). Planar, highly doped Si electrodes with contact separation of 200 nm were fabricated from silicon-on-insulator substrates, by combination of electron beam lithography and reactive ion etching. The gaps between the electrodes of height 110 nm were filled with thin-films of hexyl functionalized SiNCs (diameter 3 nm) from colloidal dispersions, via a pressure-transducing PDMS (polydimethylsiloxane) membrane.
View Article and Find Full Text PDFWe describe the self-assembly of gold and iron oxide nanoparticles regulated by a chemical reaction cycle that hydrolyzes a carbodiimide-based fuel. In a reaction with the chemical fuel, the nanoparticles are chemically activated to a state that favors assembling into clusters. The activated state is metastable and decays to the original precursor reversing the assembly.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2018
Solutions of silicon nanocrystals (SiNCs) are used in a diverse range of applications because of their tunable photoluminescence, biocompatibility, and the abundance of Si. In dissipative supramolecular materials, self-assembly of molecules or nanoparticles is driven by a chemical reaction network that irreversible consumes fuel. The properties of the emerging structures are controlled by the kinetics of the underlying chemical reaction network.
View Article and Find Full Text PDFDeveloping new methods, other than size and shape, for controlling the optoelectronic properties of semiconductor nanocrystals is a highly desired target. Here we demonstrate that the photoluminescence (PL) of silicon nanocrystals (SiNCs) can be tuned in the range 685-800 nm solely via surface functionalization with alkynyl(aryl) (phenylacetylene, 2-ethynylnaphthalene, 2-ethynyl-5-hexylthiophene) surface groups. Scanning tunneling microscopy/spectroscopy on single nanocrystals revealed the formation of new in-gap states adjacent to the conduction band edge of the functionalized SiNCs.
View Article and Find Full Text PDFThe influence of silicon nanocrystal (SiNC) surface characteristics obtained from different functionalization methods on the performance of LEDs was investigated. The surface of SiNCs was functionalized with hexyl chains via hydrosilylation (HS) or with organolithium reagents (OLR) and resulting SiNCs were incorporated as the emissive layer in hybrid organic/inorganic LEDs. Devices utilizing SiNCs functionalized with OLR consistently exhibited lower turn-on voltages, higher luminances and external quantum efficiencies compared to those obtained from the HS method.
View Article and Find Full Text PDFOptoelectronic properties of Si nanocrystals (SiNCs) were studied by combining scanning tunneling spectroscopy (STS) and optical measurements. The photoluminescence (PL) of phenylacetylene functionalized SiNCs red shifts relative to hexyl- and phenyl-capped counterparts, whereas the absorption spectra and the band gaps extracted from STS are similar for all surface groups. However, an in-gap state near the conduction band edge was detected by STS only for the phenylacetylene terminated SiNCs, which can account for the PL shift via relaxation across this state.
View Article and Find Full Text PDFHydride-terminated photoluminescent silicon nanocrystals (SiNCs) were functionalized with organolithium compounds. The reaction is proposed to proceed through cleavage of Si - Si bonds and formation of a Si - Li surface species. The method yields colloidally stabilized SiNCs at room temperature with short reaction times.
View Article and Find Full Text PDFCopper (II) oxide nanoparticles were synthesized in an ultrasound assisted Fenton-like aqueous reaction between copper (II) cations and hydrogen peroxide. The reactions were initiated with the degradation of hydrogen peroxide by ultrasound induced cavitations at 0 °C or 5 °C and subsequent generation of the OH radical. The radical was converted into hydroxide anion in Fenton-like reactions and copper hydroxides were readily converted to oxides without the need of post annealing or aging of the samples.
View Article and Find Full Text PDF