Publications by authors named "Arye Nehorai"

About one in ten babies is born preterm, i.e., before completing 37 weeks of gestation, which can result in permanent neurologic deficit and is a leading cause of child mortality.

View Article and Find Full Text PDF

The study of spreading phenomena in networks, in particular the spread of disease, has attracted considerable interest in the network science research community. In this paper, we show that the outbreak of an epidemic can be effectively contained and suppressed in a small subnetwork by a combination of antidote distribution and partial quarantine. We improve over existing antidote distribution schemes based on personalized PageRank in two ways.

View Article and Find Full Text PDF

Graph clustering, a fundamental technique in network science for understanding structures in complex systems, presents inherent problems. Though studied extensively in the literature, graph clustering in large systems remains particularly challenging because massive graphs incur a prohibitively large computational load. The heat kernel PageRank provides a quantitative ranking of nodes, and a local cluster can be efficiently found by performing a sweep over the heat kernel PageRank vector.

View Article and Find Full Text PDF

With the COVID-19 pandemic infecting millions of people, large-scale isolation policies have been enacted across the globe. To assess the impact of isolation measures on deaths, hospitalizations, and economic output, we create a mathematical model to simulate the spread of COVID-19, incorporating effects of restrictive measures and segmenting the population based on health risk and economic vulnerability. Policymakers make isolation policy decisions based on current levels of disease spread and economic damage.

View Article and Find Full Text PDF

The resolution and accuracy of single-molecule localization microscopes (SMLMs) are routinely benchmarked using simulated data, calibration rulers, or comparisons to secondary imaging modalities. However, these methods cannot quantify the nanoscale accuracy of an arbitrary SMLM dataset. Here, we show that by computing localization stability under a well-chosen perturbation with accurate knowledge of the imaging system, we can robustly measure the confidence of individual localizations without ground-truth knowledge of the sample.

View Article and Find Full Text PDF

As the uterus remodels in preparation for delivery, the excitability and contractility of the uterine smooth muscle layer, the myometrium, increase drastically. But when remodelling proceeds abnormally it can contribute to preterm birth, slow progress of labour, and failure to initiate labour. Remodelling increases intercellular coupling and cellular excitability, which are the main targets of pharmaceutical treatments for uterine contraction disorders.

View Article and Find Full Text PDF

In this paper we define the concept of the Machine Learning Morphism (MLM) as a fundamental building block to express operations performed in machine learning such as data preprocessing, feature extraction, and model training. Inspired by statistical learning, MLMs are morphisms whose parameters are minimized via a risk function. We explore operations such as composition of MLMs and when sets of MLMs form a vector space.

View Article and Find Full Text PDF

In this paper, we develop an algorithm to automatically validate and segment a gait cycle in real time into three gait events, namely midstance, toe-off, and heel-strike, using inertial sensors. We first use the physical models of sensor data obtained from a foot-mounted inertial system to differentiate stationary and moving segments of the sensor data. Next, we develop an optimization routine called sparsity-assisted wavelet denoising (SAWD), which simultaneously combines linear time invariant filters, orthogonal multiresolution representations such as wavelets, and sparsity-based methods, to generate a sparse template of the moving segments of the gyroscope measurements in the sagittal plane for valid gait cycles.

View Article and Find Full Text PDF

Uterine contractions during normal pregnancy and preterm birth are an important physiological activity. Although the cause of preterm labor is usually unknown, preterm birth creates very serious health concerns in many cases. Therefore, understanding normal birth and predicting preterm birth can help both newborn babies and their families.

View Article and Find Full Text PDF

The low-rank approximation problem has recently attracted wide concern due to its excellent performance in real-world applications such as image restoration, traffic monitoring, and face recognition. Compared with the classic nuclear norm, the Schatten-p norm is stated to be a closer approximation to restrain the singular values for practical applications in the real world. However, Schatten-p norm minimization is a challenging non-convex, non-smooth, and non-Lipschitz problem.

View Article and Find Full Text PDF

In this paper, we present a mathematical and computational framework for comparing and matching distributions in reproducing kernel Hilbert spaces (RKHS). This framework, called optimal transport in RKHS, is a generalization of the optimal transport problem in input spaces to (potentially) infinite-dimensional feature spaces. We provide a computable formulation of Kantorovich's optimal transport in RKHS.

View Article and Find Full Text PDF

Single-molecule localization microscopy (SMLM) depends on sequential detection and localization of individual molecular blinking events. Due to the stochasticity of single-molecule blinking and the desire to improve SMLM's temporal resolution, algorithms capable of analyzing frames with a high density (HD) of active molecules, or molecules whose images overlap, are a prerequisite for accurate location measurements. Thus far, HD algorithms are evaluated using scalar metrics, such as root-mean-square error, that fail to quantify the structure of errors caused by the structure of the sample.

View Article and Find Full Text PDF

Understanding the uterine source of the electrophysiological activity of contractions during pregnancy is of scientific interest and potential clinical applications. In this work, we propose a method to estimate uterine source currents from magnetomyography (MMG) temporal course measurements on the abdominal surface. In particular, we develop a linear forward model, based on the quasistatic Maxwell's equations and a realistic four-compartment volume conductor, relating the magnetic fields to the source currents on the uterine surface through a lead-field matrix.

View Article and Find Full Text PDF

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

View Article and Find Full Text PDF

In this paper, we develop new methods to automatically detect the onset and duration of freezing of gait (FOG) in people with Parkinson disease (PD) in real time, using inertial sensors. We first build a physical model that describes the trembling motion during the FOG events. Then, we design a generalized likelihood ratio test framework to develop a two-stage detector for determining the zero-velocity and trembling events during gait.

View Article and Find Full Text PDF

Network science plays a central role in understanding and modeling complex systems in many areas including physics, sociology, biology, computer science, economics, politics, and neuroscience. One of the most important features of networks is community structure, i.e.

View Article and Find Full Text PDF

Meta-analyses that synthesize statistical evidence across studies have become important analytical tools for genetic studies. Inspired by the success of genome-wide association studies of the genetic main effect, researchers are searching for gene × environment interactions. Confounders are routinely included in the genome-wide gene × environment interaction analysis as covariates; however, this does not control for any confounding effects on the results if covariate × environment interactions are present.

View Article and Find Full Text PDF

We propose a hidden Markov model approach for processing seismocardiograms. The seismocardiogram morphology is learned using the expectation-maximization algorithm, and the state of the heart at a given time instant is estimated by the Viterbi algorithm. From the obtained Viterbi sequence, it is then straightforward to estimate instantaneous heart rate, heart rate variability measures, and cardiac time intervals (the latter requiring a small number of manual annotations).

View Article and Find Full Text PDF

Temporal and spatial filtering of fMRI data is often used to improve statistical power. However, conventional methods, such as smoothing with fixed-width Gaussian filters, remove fine-scale structure in the data, necessitating a tradeoff between sensitivity and specificity. Specifically, smoothing may increase sensitivity (reduce noise and increase statistical power) but at the cost loss of specificity in that fine-scale structure in neural activity patterns is lost.

View Article and Find Full Text PDF

We present a novel framework for evaluating the risk of failures in power transmission systems. We use the concept of systemic risk measures from the financial mathematics literature with models of power system failures in order to quantify the risk of the entire power system for design and comparative purposes. The proposed risk measures provide the collection of capacity vectors for the components in the system that lead to acceptable outcomes.

View Article and Find Full Text PDF

A controversy exists on photic driving in the human visual cortex evoked by intermittent photic stimulation. Frequency entrainment and resonance phenomena are reported for frequencies higher than 12 Hz in some studies while missing in others. We hypothesized that this might be due to different experimental conditions, since both high and low intensity light stimulation were used.

View Article and Find Full Text PDF

Understanding the mechanisms of uterine contractions during pregnancy is especially important in predicting the onset of labor and thus in forecasting preterm deliveries. Preterm birth can cause serious health problems in newborns, as well as large financial burdens to society. Various techniques such as electromyography (EMG) and magnetomyography (MMG) have been developed to quantify uterine contractions.

View Article and Find Full Text PDF

Deeper understanding of the anatomical intermediaries for disease and other complex genetic traits is essential to understanding mechanisms and developing new interventions. Existing ontology tools provide functional, curated annotations for many genes and can be used to develop mechanistic hypotheses; yet information about the spatial expression of genes may be equally useful in interpreting results and forming novel hypotheses for a trait. Therefore, we developed an approach for statistically testing the relationship between gene expression across the body and sets of candidate genes from across the genome.

View Article and Find Full Text PDF