Coral reef ecosystems are being fundamentally restructured by local human impacts and climate-driven marine heatwaves that trigger mass coral bleaching and mortality. Reducing local impacts can increase reef resistance to and recovery from bleaching. However, resource managers lack clear advice on targeted actions that best support coral reefs under climate change and sector-based governance means most land- and sea-based management efforts remain siloed.
View Article and Find Full Text PDFThe original version of the Article was missing an acknowledgement of a funding source. The authors acknowledge that A. Safaie and K.
View Article and Find Full Text PDFCoral bleaching is the detrimental expulsion of algal symbionts from their cnidarian hosts, and predominantly occurs when corals are exposed to thermal stress. The incidence and severity of bleaching is often spatially heterogeneous within reef-scales (<1 km), and is therefore not predictable using conventional remote sensing products. Here, we systematically assess the relationship between in situ measurements of 20 environmental variables, along with seven remotely sensed SST thermal stress metrics, and 81 observed bleaching events at coral reef locations spanning five major reef regions globally.
View Article and Find Full Text PDF