Publications by authors named "Arya Mekkat"

Phosphoproteomics studies have reported phosphorylation at multiple sites within collagen, raising the possibility that these post-translational modifications regulate the physical or biological properties of collagen. In this study, molecular dynamics simulations and experimental studies were carried out on model peptides to establish foundational principles of phosphorylation of Ser residues in collagen. A (Gly-Xaa-Yaa) peptide was designed to include a Ser-containing sequence from type I collagen that was reported to be phosphorylated.

View Article and Find Full Text PDF

Cleavage of collagen by collagenases such as matrix metalloproteinase 1 (MMP-1) is a key step in development, tissue remodeling, and tumor proliferation. The abundant heterotrimeric type I collagen composed of two α1(I) chains and one α2(I) chain is efficiently cleaved by MMP-1 at a unique site in the triple helix, a process which may be initiated by local unfolding within the peptide chains. Atypical homotrimers of the α1(I) chain, found in embryonic and cancer tissues, are very resistant to MMP cleavage.

View Article and Find Full Text PDF

Gly missense mutations in type I collagen, which replace a conserved Gly in the repeating (Gly-Xaa-Yaa) sequence with a larger residue, are known to cause Osteogenesis Imperfecta (OI). The clinical consequences of such mutations range from mild to lethal, with more serious clinical severity associated with larger Gly replacement residues. Here, we investigate the influence of the identity of the residue replacing Gly within and adjacent to the integrin binding GFPGER sequence on triple-helix structure, stability and integrin binding using a recombinant bacterial collagen system.

View Article and Find Full Text PDF