Publications by authors named "Ary Portes"

Complex non-local behavior makes designing high efficiency and multifunctional metasurfaces a significant challenge. While using libraries of meta-atoms provide a simple and fast implementation methodology, pillar to pillar interaction often imposes performance limitations. On the other extreme, inverse design based on topology optimization leverages non-local coupling to achieve high efficiency, but leads to complex and difficult to fabricate structures.

View Article and Find Full Text PDF

This paper investigates the impact of graphene on tip-enhanced Raman spectroscopy (TERS) by developing an electromagnetic characterization of the TERS-graphene device system. The study focuses on the interaction between the tip, the gate voltage, and the sample, specifically examining the electromagnetic effects in the system. Employing a finite element method (FEM)-based simulation model, we meticulously dissect the electric field distribution and the Raman amplification when graphene is introduced into the system.

View Article and Find Full Text PDF

Coherence length () of the Raman scattering process in graphene as a function of Fermi energy is obtained with spatially coherent tip-enhanced Raman spectroscopy. decreases when the Fermi energy is moved into the neutrality point, consistent with the concept of the Kohn anomaly within a ballistic transport regime. Since the Raman scattering involves electrons and phonons, the observed results can be rationalized either as due to unusually large variation of the longitudinal optical phonon group velocity , reaching twice the value for the longitudinal acoustic phonon, or due to changes in the electron energy uncertainty, both properties being important for optical and transport phenomena that might not be observable by any other technique.

View Article and Find Full Text PDF

In this work, we present an interferometric polymer-based electro-optical device, integrated with an embedded double-monolayer graphene capacitor for biosensing applications. An external voltage across the capacitor applies an electric field to the graphene layers modifying their surface charge density and the Fermi level position in these layers. This in turn changes the electro-optic properties of the graphene layers making absorption in the waveguide tunable with external voltages.

View Article and Find Full Text PDF