The interaction between immune cells and virus-infected targets involves multiple plasma membrane (PM) proteins. A systematic study of PM protein modulation by vaccinia virus (VACV), the paradigm of host regulation, has the potential to reveal not only novel viral immune evasion mechanisms, but also novel factors critical in host immunity. Here, >1000 PM proteins were quantified throughout VACV infection, revealing selective downregulation of known T and NK cell ligands including HLA-C, downregulation of cytokine receptors including IFNAR2, IL-6ST and IL-10RB, and rapid inhibition of expression of certain protocadherins and ephrins, candidate activating immune ligands.
View Article and Find Full Text PDFBackground: High-pathogenicity avian influenza viruses continue to circulate in poultry and wild birds and occasionally infect humans, sometimes with fatal outcomes. Development of vaccines is a priority to prepare for potential pandemics but is complicated by antigenic variation of the surface glycoprotein hemagglutinin. We report the immunological profile induced by human immunization with modified vaccinia virus Ankara (MVA) expressing the hemagglutinin gene of influenza A(H5N1) virus A/Vietnam/1194/04 (rMVA-H5).
View Article and Find Full Text PDFThe replication-deficient orthopoxvirus modified vaccinia virus Ankara (MVA) is a promising vaccine vector against various pathogens and has an excellent safety record. However, pre-existing vector-specific immunity is frequently suggested to be a drawback of MVA-based vaccines. To address this issue, mice were vaccinated with MVA-based influenza vaccines in the presence or absence of orthopoxvirus-specific immunity.
View Article and Find Full Text PDFInfluenza viruses continuously circulate in the human population and escape recognition by virus neutralizing antibodies induced by prior infection or vaccination through accumulation of mutations in the surface proteins hemagglutinin (HA) and neuraminidase (NA). Various strategies to develop a vaccine that provides broad protection against different influenza A viruses are under investigation, including use of recombinant (r) viral vectors and adjuvants. The replication-deficient modified vaccinia virus Ankara (MVA) is a promising vaccine vector that efficiently induces B and T cell responses specific for the antigen of interest.
View Article and Find Full Text PDFModified Vaccinia virus Ankara (MVA) is a promising vaccine vector with an excellent safety profile. However, despite extensive pre-clinical and clinical testing, surprisingly little is known about the cellular tropism of MVA, especially in relevant animal species. Here, we performed in vitro, ex vivo and in vivo experiments with recombinant MVA expressing green fluorescent protein (rMVA-GFP).
View Article and Find Full Text PDFUnlabelled: Due to antigenic drift of influenza viruses, seasonal influenza vaccines need to be updated annually. These vaccines are based on predictions of strains likely to circulate in the next season. However, vaccine efficacy is greatly reduced in the case of a mismatch between circulating and vaccine strains.
View Article and Find Full Text PDFCurrently used influenza vaccines are only effective when the vaccine strains match the epidemic strains antigenically. To this end, seasonal influenza vaccines must be updated almost annually. Furthermore, seasonal influenza vaccines fail to afford protection against antigenically distinct pandemic influenza viruses.
View Article and Find Full Text PDFUnlabelled: Perturbation of protein-protein interactions relies mostly on genetic approaches or on chemical inhibition. Small RNA viruses, such as influenza A virus, do not easily lend themselves to the former approach, while chemical inhibition requires that the target protein be druggable. A lack of tools thus constrains the functional analysis of influenza virus-encoded proteins.
View Article and Find Full Text PDFSince inactivated influenza vaccines mainly confer protective immunity by inducing strain-specific antibodies to the viral hemagglutinin, these vaccines only afford protection against infection with antigenically matching influenza virus strains. Due to the continuous emergence of antigenic drift variants of seasonal influenza viruses and the inevitable future emergence of pandemic influenza viruses, there is considerable interest in the development of influenza vaccines that induce broader protective immunity. It has long been recognized that influenza virus-specific CD8(+) T cells directed to epitopes located in the relatively conserved internal proteins can cross-react with various subtypes of influenza A virus.
View Article and Find Full Text PDFRespiratory viruses infections caused by influenza viruses, human parainfluenza virus (hPIV), respiratory syncytial virus (RSV) and coronaviruses are an eminent threat for public health. Currently, there are no licensed vaccines available for hPIV, RSV and coronaviruses, and the available seasonal influenza vaccines have considerable limitations. With regard to pandemic preparedness, it is important that procedures are in place to respond rapidly and produce tailor made vaccines against these respiratory viruses on short notice.
View Article and Find Full Text PDFSeveral enveloped viruses exploit host pathways, such as the cellular endosomal sorting complex required for transport (ESCRT) machinery, for their assembly and release. The influenza A virus (IAV) matrix protein binds to the ESCRT-I complex, although the involvement of early ESCRT proteins such as Tsg101 in IAV trafficking remain to be established. We find that Tsg101 can facilitate IAV trafficking, but this is effectively restricted by the interferon (IFN)-stimulated protein ISG15.
View Article and Find Full Text PDFInfluenza A virus-specific B lymphocytes and the antibodies they produce protect against infection. However, the outcome of interactions between an influenza haemagglutinin-specific B cell via its receptor (BCR) and virus is unclear. Through somatic cell nuclear transfer we generated mice that harbour B cells with a BCR specific for the haemagglutinin of influenza A/WSN/33 virus (FluBI mice).
View Article and Find Full Text PDF