Despite the established use of immune checkpoint inhibitors (ICIs) to treat non-small cell lung cancer (NSCLC), only a subset of patients benefit from treatment and ∼50% of patients whose tumors respond eventually develop acquired resistance (AR). To identify novel drivers of AR, we generated murine Msh2 knock-out (KO) lung tumors that initially responded but eventually developed AR to anti-PD-1, alone or in combination with anti-CTLA-4. Resistant tumors harbored decreased infiltrating T cells and reduced cancer cell-intrinsic MHC-I and MHC-II levels, yet remained responsive to IFNγ.
View Article and Find Full Text PDFTo dissect variant-function relationships in the KRAS oncoprotein, we performed deep mutational scanning (DMS) screens for both wild-type and KRAS mutant alleles. We defined the spectrum of oncogenic potential for nearly all possible variants, identifying several novel transforming alleles and elucidating a model to describe the frequency of mutations in human cancer as a function of transforming potential, mutational probability, and tissue-specific mutational signatures. Biochemical and structural analyses of variants identified in a KRAS second-site suppressor DMS screen revealed that attenuation of oncogenic KRAS can be mediated by protein instability and conformational rigidity, resulting in reduced binding affinity to effector proteins, such as RAF and PI3-kinases, or reduced SOS-mediated nucleotide exchange activity.
View Article and Find Full Text PDFBackground: Comprehensive profiling of autoantibodies (AAbs) in metastatic urothelial cancer (mUC) has not been performed to date. This may aid in diagnosis of UC, uncover novel therapeutic targets in this disease as well as identify associations between AAbs and response and toxicity to systemic therapies.
Methods: We used serum from patients with mUC collected prior to and after systemic therapy (immune checkpoint inhibitor (ICI) or platinum-based chemotherapy (PBC)) at Dana-Farber Cancer Institute.
Anti-PD-1/PD-L1 agents have transformed the treatment landscape of advanced non-small cell lung cancer (NSCLC). To expand our understanding of the molecular features underlying response to checkpoint inhibitors in NSCLC, we describe here the first joint analysis of the Stand Up To Cancer-Mark Foundation cohort, a resource of whole exome and/or RNA sequencing from 393 patients with NSCLC treated with anti-PD-(L)1 therapy, along with matched clinical response annotation. We identify a number of associations between molecular features and outcome, including (1) favorable (for example, ATM altered) and unfavorable (for example, TERT amplified) genomic subgroups, (2) a prominent association between expression of inducible components of the immunoproteasome and response and (3) a dedifferentiated tumor-intrinsic subtype with enhanced response to checkpoint blockade.
View Article and Find Full Text PDFTGF-β induces senescence in embryonic tissues. Whether TGF-β in the hypoxic tumor microenvironment (TME) induces senescence in cancer and how the ensuing senescence-associated secretory phenotype (SASP) remodels the cellular TME to influence immune checkpoint inhibitor (ICI) responses are unknown. We show that TGF-β induces a deeper senescent state under hypoxia than under normoxia; deep senescence correlates with the degree of E2F suppression and is marked by multinucleation, reduced reentry into proliferation, and a distinct 14-gene SASP.
View Article and Find Full Text PDFImportance: Although tumor mutation burden (TMB) has been explored as a potential biomarker of immunotherapy efficacy in solid tumors, there still is a lack of consensus about the optimal TMB threshold that best discriminates improved outcomes of immune checkpoint inhibitor therapy among patients with non-small cell lung cancer (NSCLC).
Objectives: To determine the association between increasing TMB levels and immunotherapy efficacy across clinically relevant programmed death ligand-1 (PD-L1) levels in patients with NSCLC.
Design, Setting, And Participants: This multicenter cohort study included patients with advanced NSCLC treated with immunotherapy who received programmed cell death-1 (PD-1) or PD-L1 inhibition in the Dana-Farber Cancer Institute (DFCI), Memorial Sloan Kettering Cancer Center (MSKCC), and in the Stand Up To Cancer (SU2C)/Mark Foundation data sets.
Background: Tumor infiltrating lymphocytes (TILs) reflect adaptive antitumor immune responses in cancer and are generally associated with favorable prognosis. However, the relationships between TILs subsets and their spatial arrangement with clinical benefit from immune checkpoint inhibitors (ICI) in non-small cell lung cancer (NSCLC) remains less explored.
Methods: We used multiplexed quantitative immunofluorescence panels to determine the association of major TILs subpopulations, CD8 cytotoxic T cells, CD4 helper T cells and CD20 B cells, and T cell exhaustion markers, programmed cell death protein-1 (PD-1),lymphocyte-activation gene 3 (LAG-3) and T cell immunoglobulin mucin-3 (TIM-3) with outcomes in a multi-institutional cohort of baseline tumor samples from 179 patients with NSCLC treated with ICI.
Serial evaluation of circulating tumor DNA may allow noninvasive assessment of drivers of resistance to immune checkpoint inhibitors (ICIs) in advanced urothelial cancer (aUC). We used a novel, amplicon-based next-generation sequencing assay to identify genomic alterations (GAs) pre- and post-therapy in 39 patients with aUC receiving ICI and 6 receiving platinum-based chemotherapy (PBC). One or more GA was seen in 95% and 100% of pre- and post-ICI samples, respectively, commonly in TP53 (54% and 54%), TERT (49% and 59%), and BRCA1/BRCA2 (33% and 33%).
View Article and Find Full Text PDFImmune checkpoint blockade (CPB) improves melanoma outcomes, but many patients still do not respond. Tumor mutational burden (TMB) and tumor-infiltrating T cells are associated with response, and integrative models improve survival prediction. However, integrating immune/tumor-intrinsic features using data from a single assay (DNA/RNA) remains underexplored.
View Article and Find Full Text PDFSummary: Post-sequencing quality control is a crucial component of RNA sequencing (RNA-seq) data generation and analysis, as sample quality can be affected by sample storage, extraction and sequencing protocols. RNA-seq is increasingly applied to cohorts ranging from hundreds to tens of thousands of samples in size, but existing tools do not readily scale to these sizes, and were not designed for a wide range of sample types and qualities. Here, we describe RNA-SeQC 2, an efficient reimplementation of RNA-SeQC (DeLuca et al.
View Article and Find Full Text PDFBackground: Reliable biomarkers to predict the response of metastatic urothelial cancer (mUC) to programmed death-1 and programmed death-ligand 1 (PD-1/PD-L1) inhibitors are being investigated. Texture analysis represents tumor heterogeneity and may serve as a predictor of response in mUC.
Objective: To assess the predictive ability of computed tomography (CT) texture analysis for progression-free survival (PFS) in patients with mUC treated with PD-1/PD-L1 inhibitors.
Myeloproliferative neoplasms (MPNs) are diseases of excess cell proliferation from bone marrow precursors. Two classic MPNs, polycythemia vera (PV) and essential thrombocytosis (ET), are conditions of excess proliferation of red blood cells and platelets, respectively. Although PV and ET involve different cells in the myeloid lineage, their clinical presentations have shared features, consistent with overlapping mutations in growth factor signaling.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are critical to proliferation, differentiation, and development. Here, we characterize gene expression in murine Dicer-null adult mesenchymal stem cell lines, a fibroblast cell type. Loss of Dicer leads to derepression of let-7 targets at levels that exceed 10-fold to 100-fold with increases in transcription.
View Article and Find Full Text PDFMicroRNAs are a class of short ~22 nucleotide RNAs predicted to regulate nearly half of all protein coding genes, including many involved in basal cellular processes and organismal development. Although a global reduction in miRNAs is commonly observed in various human tumors, complete loss has not been documented, suggesting an essential function for miRNAs in tumorigenesis. Here we present the finding that transformed or immortalized Dicer1 null somatic cells can be isolated readily in vitro, maintain the characteristics of DICER1-expressing controls and remain stably proliferative.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2011
Variations in microRNA (miRNA) gene and/or target repertoire are likely to be key drivers of phenotypic differences between species. To better understand these changes, we developed a computational method that identifies signatures of species-specific target site gain and loss associated with miRNA acquisition. Interestingly, several of the miRNAs implicated in mouse 3' UTR evolution derive from a single rapidly expanded rodent-specific miRNA cluster.
View Article and Find Full Text PDFMicroRNAs (miRNAs) post-transcriptionally regulate the expression of thousands of distinct mRNAs. While some regulatory interactions help to maintain basal cellular functions, others are likely relevant in more specific settings, such as response to stress. Here we describe such a role for the mir-290-295 cluster, the dominant miRNA cluster in mouse embryonic stem cells (mESCs).
View Article and Find Full Text PDFCyclic mechanical strain produced by pulsatile blood flow regulates the orientation of endothelial cells lining blood vessels and influences critical processes such as angiogenesis. Mechanical stimulation of stretch-activated calcium channels is known to mediate this reorientation response; however, the molecular basis remains unknown. Here, we show that cyclically stretching capillary endothelial cells adherent to flexible extracellular matrix substrates activates mechanosensitive TRPV4 (transient receptor potential vanilloid 4) ion channels that, in turn, stimulate phosphatidylinositol 3-kinase-dependent activation and binding of additional beta1 integrin receptors, which promotes cytoskeletal remodeling and cell reorientation.
View Article and Find Full Text PDFLooping is a vital event during early cardiac morphogenesis, as the initially straight heart tube bends and twists into a curved tube, laying out the basic pattern of the future four-chambered heart. Despite intensive study for almost a century, the biophysical mechanisms that drive this process are not well understood. To explore a recently proposed hypothesis for looping, we constructed a finite element model for the embryonic chick heart during the first phase of looping, called c-looping.
View Article and Find Full Text PDF