Publications by authors named "Arvind Panday"

This review provides an overview regarding the abdominal effects of an omentectomy, with or without extra-peritoneal reconstructions. In general, reported complication rates were low. Short-term complications involved ileus, bowel stenosis, abdominal abscess and sepsis (range 0.

View Article and Find Full Text PDF

In this protocol, we use CRISPR/Cas9 to generate large deletions of the entire coding region of a gene of interest, generating a hemizygous cell line. Next, we systematically engineer precise in-frame deletions within the intact wild-type allele, facilitating study of multi-domain proteins. The optimized protocol described here allows us to rapidly screen for effective sgRNA pairs and to engineer either an in-frame deletion or a frameshift mutation in high frequencies in mouse embryonic stem cells.

View Article and Find Full Text PDF

Vertebrate replication forks arrested at interstrand DNA cross-links (ICLs) engage the Fanconi anemia pathway to incise arrested forks, 'unhooking' the ICL and forming a double strand break (DSB) that is repaired by homologous recombination (HR). The FANCP product, SLX4, in complex with the XPF (also known as FANCQ or ERCC4)-ERCC1 endonuclease, mediates ICL unhooking. Whether this mechanism operates at replication fork barriers other than ICLs is unknown.

View Article and Find Full Text PDF

Chromatin immunoprecipitation coupled with quantitative PCR (ChIP-qPCR) even with optimization may give low signal-to-background ratio and spatial resolution. Here, we adapted Cleavage Under Targets and Release Using Nuclease (CUT&RUN) (originally developed by the Henikoff group) to develop CUT&RUN-qPCR. By studying the recruitment of selected proteins (but amenable to other proteins), we find that CUT&RUN-qPCR is more sensitive and gives better spatial resolution than ChIP-qPCR.

View Article and Find Full Text PDF

Replication fork stalling occurs when the replisome encounters a barrier to normal fork progression. Replisome stalling events are common during scheduled DNA synthesis, but vary in their severity. At one extreme, a lesion may induce only temporary pausing of a DNA polymerase; at the other, it may present a near-absolute barrier to the replicative helicase and effectively block fork progression.

View Article and Find Full Text PDF

Repair pathway "choice" at stalled mammalian replication forks is an important determinant of genome stability; however, the underlying mechanisms are poorly understood. FANCM encodes a multi-domain scaffolding and motor protein that interacts with several distinct repair protein complexes at stalled forks. Here, we use defined mutations engineered within endogenous Fancm in mouse embryonic stem cells to study how Fancm regulates stalled fork repair.

View Article and Find Full Text PDF

The major pathways of DNA double-strand break (DSB) repair are crucial for maintaining genomic stability. However, if deployed in an inappropriate cellular context, these same repair functions can mediate chromosome rearrangements that underlie various human diseases, ranging from developmental disorders to cancer. The two major mechanisms of DSB repair in mammalian cells are non-homologous end joining (NHEJ) and homologous recombination.

View Article and Find Full Text PDF

Classical non-homologous end joining (C-NHEJ) and homologous recombination (HR) compete to repair mammalian chromosomal double strand breaks (DSBs). However, C-NHEJ has no impact on HR induced by DNA nicking enzymes. In this case, the replication fork is thought to convert the DNA nick into a one-ended DSB, which lacks a readily available partner for C-NHEJ.

View Article and Find Full Text PDF

Small, approximately 10-kilobase microhomology-mediated tandem duplications are abundant in the genomes of BRCA1-linked but not BRCA2-linked breast cancer. Here we define the mechanism underlying this rearrangement signature. We show that, in primary mammalian cells, BRCA1, but not BRCA2, suppresses the formation of tandem duplications at a site-specific chromosomal replication fork barrier imposed by the binding of Tus proteins to an array of Ter sites.

View Article and Find Full Text PDF

The mechanistic target of rapamycin complex 1 (mTORC1) senses nutrient sufficiency and cellular stress. When mTORC1 is inhibited, protein synthesis is reduced in an intricate process that includes a concerted down-regulation of genes encoding rRNA and ribosomal proteins. The high-mobility group protein Hmo1p has been implicated in coordinating this response to mTORC1 inhibition.

View Article and Find Full Text PDF

The primary pathways for DNA double strand break (DSB) repair are homologous recombination (HR) and non-homologous end-joining (NHEJ). The choice between HR and NHEJ is influenced by the extent of DNA end resection, as extensive resection is required for HR but repressive to NHEJ. Conversely, association of the DNA end-binding protein Ku, which is integral to classical NHEJ, inhibits resection.

View Article and Find Full Text PDF

Eukaryotic genomes are packaged in chromatin. The higher-order organization of nucleosome core particles is controlled by the association of the intervening linker DNA with either the linker histone H1 or high mobility group box (HMGB) proteins. While H1 is thought to stabilize the nucleosome by preventing DNA unwrapping, the DNA bending imposed by HMGB may propagate to the nucleosome to destabilize chromatin.

View Article and Find Full Text PDF

The nuclear factor (NF)-κB family of transcription factors are ubiquitous and pleiotropic molecules that regulate the expression of more than 150 genes involved in a broad range of processes including inflammation, immunity, cell proliferation, differentiation, and survival. The chronic activation or dysregulation of NF-κB signaling is the central cause of pathogenesis in many disease conditions and, therefore, NF-κB is a major focus of therapeutic intervention. Because of this, understanding the relationship between NF-κB and the induction of various downstream signaling molecules is imperative.

View Article and Find Full Text PDF

Background: Eukaryotic chromatin consists of nucleosome core particles connected by linker DNA of variable length. Histone H1 associates with the linker DNA to stabilize the higher-order chromatin structure and to modulate the ability of regulatory factors to access their nucleosomal targets. In Saccharomyces cerevisiae, the protein with greatest sequence similarity to H1 is Hho1p.

View Article and Find Full Text PDF

DNA is packaged into condensed chromatin fibers by association with histones and architectural proteins such as high mobility group (HMGB) proteins. However, this DNA packaging reduces accessibility of enzymes that act on DNA, such as proteins that process DNA after double strand breaks (DSBs). Chromatin remodeling overcomes this barrier.

View Article and Find Full Text PDF

Oxygen-derived free radicals, collectively termed reactive oxygen species (ROS), play important roles in immunity, cell growth, and cell signaling. In excess, however, ROS are lethal to cells, and the overproduction of these molecules leads to a myriad of devastating diseases. The key producers of ROS in many cells are the NOX family of NADPH oxidases, of which there are seven members, with various tissue distributions and activation mechanisms.

View Article and Find Full Text PDF