Peroxisomes are intracellular organelles that house a number of diverse metabolic processes, notably those required for beta-oxidation of fatty acids. Peroxisomes biogenesis can be induced by the presence of peroxisome proliferators, including fatty acids, which activate complex cellular programs that underlie the induction process. Here, we used multi-parameter quantitative phenotype analyses of an arrayed mutant collection of yeast cells induced to proliferate peroxisomes, to establish a comprehensive inventory of genes required for peroxisome induction and function.
View Article and Find Full Text PDFAs a promiscuous redox partner, the biological role of cytochrome P450 reductase (CPR) depends significantly on protein-protein interactions. We tested a hypothesized CPR docking site by mutating D113, E115, and E116 to alanine and assaying activity toward various electron acceptors as a function of ionic strength. Steady-state cytochrome c studies demonstrated the mutations improved catalytic efficiency and decreased the impact of ionic strength on catalytic parameters when compared to wild type.
View Article and Find Full Text PDFAlthough a single binary functional complex between cytochrome P450 (P450 or CYP for a specific isoform) and cytochrome P450 reductase (CPR) has been generally accepted in the literature, this simple model failed to explain the experimentally observed catalytic activity of recombinant CYP2E1 in dependence on the total concentration of the added CPR-K56Q mutant. Our rejection of the simplest 1:1 binding model was based on two independent lines of experimental evidence. First, under the assumption of the 1:1 binding model, separate analyses of titration curves obtained while varying either P450 or CPR concentrations individually produced contradictory results.
View Article and Find Full Text PDFDespite its biological importance, our knowledge of active site structure and relevance of critical amino acids in CYP2E1 catalytic processes remain limited. In this study, we identified CYP2E1 active site residues using photoaffinity labeling with 7-azido-4-methylcoumarin (AzMC) coupled with a CYP2E1 homology model. In the absence of light, AzMC was an effective competitor against substrate p-nitrophenol oxidation by CYP2E1.
View Article and Find Full Text PDFAlthough the reductase domain of cytochrome P450 BM3 (BMR) catalyzes the reduction of cytochrome c and 2,6-dichlorophenolindophenol, we observed a catalytically independent loss of activity. By varying the incubation time for the enzyme prior to reaction initiation, we measured an inactivation rate of 0.22 min(-1).
View Article and Find Full Text PDF