The level of hearing restoration in patients with severe to profound sensorineural hearing loss by means of cochlear implants (CIs) has drastically risen since the introduction of these neuroprosthetics. The proposed CI integrated with polymer optical fiber Bragg gratings (POFBGs) enables real-time evaluation of insertion forces and trajectory determination during implantation irrespective of the speed of insertion, as well as provides high signal quality, low stiffness levels, minimum induced stress even under forces of high magnitudes and exhibits significant reduction of the risk of fiber breakage inside the constricted cochlear geometry. As such, the proposed device opens new avenues towards atraumatic cochlear implantations and provides a direct route for the next generation of CIs with intraoperative insertion force assessment and path planning capacity crucial for surgical navigation.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
In conventional Minimally Invasive Surgery, the surgeon conducts the operation while a human or robot holds the laparoscope. Laparoscope control is returned to the surgeon in teleoperated camera holding robots, but simultaneously controlling the laparoscope and surgical tools might be cognitively demanding. On the other hand, fully automated camera holders are still limited in their performance.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
Cochlear Implant is used for patients with severe hearing loss. It is a neural-prosthesis that stimulates the nerve endings within the cochlea, which is the organ of hearing. The surgical technique involves inserting the electrode array of the implant into a very small "snail-like" spiral structure.
View Article and Find Full Text PDF