Publications by authors named "Arvind Lali"

Demonstrating outdoor cultivation of engineered microalgae at considerable scales is essential for their prospective large-scale deployment. Hence, this study focuses on the outdoor cultivation of an engineered Chlamydomonas reinhardtii strain, 3XAgBs-SQs, for bisabolene production under natural dynamic conditions of light and temperature. Our preliminary outdoor experiments showed improved growth, but frequent culture collapses in conventional Tris-acetate-phosphate medium.

View Article and Find Full Text PDF

For complete utilization of high glucose at ∼100 g/L, a high cell density (HCD) continuous fermentation system was established using NCIM 2025 for the bioproduction of lactic acid (LA). An integrated membrane cell recycling system coupled with the continuous bioreactor, aided to achieve the highest 34.77 g/L h LA productivity and 0.

View Article and Find Full Text PDF

Commercial production of lactic acid (LA) utilizes mostly glucose or lactose coupled with yeast extract (YE) as a supplement. With sugars, nitrogen, and vitamin supplementation being most of the LA production costs, the use of inexpensive molasses, a by-product of the sugar industry, can provide considerable cost savings. There are just a few publications on the production of LA from molasses; consequently, the present investigation was conducted using molasses supplemented with yeast extract.

View Article and Find Full Text PDF

In order to improve the potential of cyanobacterial cell factories, Synechococcus sp. PCC7002 was engineered as 'one cell-two wells bio-refinery', for ethylene ('heterologous' hydrocarbon) and carotenoids ('natural' metabolites) production, and demonstrating its outdoor performance. Although the cultures showed better production outdoor, they experienced multiple collapses during scale-up.

View Article and Find Full Text PDF

As world moves toward increasing number of products being produced from renewable lignocellulosic agricultural and forest residues, the major classes of products that will shift to greener routes on priority are energy, fuels, and materials in that order. In materials segment, polyhydroxyalkanoates are an emerging class of biopolyesters with several potential industrial uses. The present work investigates medium chain length polyhydroxyalkanoates (mcl-PHA) producing capabilities of KT2440 from a mixture of compounds produced from lignocellulosic biomass deconstruction.

View Article and Find Full Text PDF

Background: Microalgae have tremendous potential in CO sequestration, bioenergy, biofuels, wastewater treatment, and high-value metabolites production. However, large-scale production of microalgae is hampered due to photo-inhibition in outdoor cultivation. Mannitol, as an osmolyte, is known to relieve the stress produced under different abiotic stress conditions during the growth of a photosynthetic organism.

View Article and Find Full Text PDF

Renewable natural gas (RNG) produced from anaerobic digestion (AD) of agricultural residues is emerging a serious biofuel alternative. Complex nature of lignocellulosic biomass residues coupled with complex biochemical transformations involving a large spectrum of microbial communities make anaerobic digestion of biomass difficult to understand and control. The present work aims at studying adaptation of microbial consortia in AD to substrates changes and correlating these to biogas generation.

View Article and Find Full Text PDF

Rapid industrialization and unscientific disposal of industrial wastewaters have resulted in the pollution of water bodies and deterioration of water quality all over the globe. Valorization of industrial wastewaters will help in reducing the negative impact on the environment and will add value to the waste. The present study targets utilization of sugar processing industrial effluent for bio-based production of Volatile fatty acids (VFA) through anaerobic acidogenesis.

View Article and Find Full Text PDF

Cyanobacterial research is impeded by the substantial discrepancies between laboratory studies and outdoor performances, despite successful demonstrations of genetically engineered strains for array of compounds. Therefore, evaluation of adaptive responses is necessary to achieve outdoor scale-up cultivation of cyanobacteria. Under current study, cyanobacterium Synechococcus elongatusPCC7942 engineered for ethylene biosynthesis, was gradually acclimatised, ensuring sustained and progressive transition from laboratory to outdoor conditions.

View Article and Find Full Text PDF

Catechol is an industrially relevant chemical with myriad applications. Its production via chemical route suffers from several drawbacks the major being a non-green and nonselective route. Currently, bio-based products using biocatalyst are gaining attention due to the growing environmental and health hazards concerns over the use of petroleum-derived feedstock.

View Article and Find Full Text PDF

2,3-Butanediol (2,3-BDO) has varied applications in chemical, pharmaceutical, & food industry. Microorganisms belonging to , & genera are well-known producers of 2,3-BDO. However, they have limited usage in industrial-scale owing to their pathogenic nature.

View Article and Find Full Text PDF

Biobased chemicals are gaining popularity and market in attempts to mitigate the deteriorating environmental and sustainability issues. Components of renewable agricultural and forest biomass residues are projected to serve as abundant precursors to synthesis of expanding range of products. Agroindustrial wastes comprises of several phenolic compounds associated with lignin via ether linkages such as ferulic acid, p-coumaric, syringic acid and vanillin.

View Article and Find Full Text PDF

Docosahexaenoic acid (DHA) rich oil or biomass is currently being produced by fermentation of thraustochytrids by repeated fed-batch. Continuous cultivation has not been successful for DHA production because of excess carbon and limited nitrogen conditions requirement. The present study describes an alternative integrative fermentation strategy to simultaneously produce high cell density, lipids and DHA in continuous mode for Aurantiochytrium limacinum.

View Article and Find Full Text PDF

A marine organism, belonging to the Thraustochytrids family was isolated from mangroves of Mumbai, India. The isolated strain was identified as  by internal transcribed spacer sequence analysis Optimization of process parameters yielded 14.47 g/L dry cell weight containing 55-58% oil in 3.

View Article and Find Full Text PDF

Development of preparative methods for the isolation of chiral molecules has been considered challenging by conventional unit operations due to their identical physical and chemical properties. This has evolved chiral stationary phases for the separation of chiral components using chromatography technique. However, separation method using chiral adsorbents requires high pressure, are expensive, and have low productivity.

View Article and Find Full Text PDF

Valorisation of organic wastes to produce industrially relevant commodity products is a sustainable, cost-effective and viable alternative providing a green platform for chemical production while simultaneously leading to waste disposal management. In the present study, organic wastes such as agricultural residue-derived sugars, oilseed meals, poultry waste and molasses were used for substituting expensive organic fermentation medium components. Moorella thermoacetica and Aurantiochytrium limacinum were adapted on these waste-derived hydrolysates to produce high volume-low value products such as bio-acetic acid (80% theoretical yields) and oil-rich fish/animal feed (more than 85% dry cell weight as compared with conventional nutrient sources) respectively.

View Article and Find Full Text PDF

Xylitol is a five-carbon sugar alcohol that has a variety of uses in the food and pharmaceutical industries. In xylose assimilating yeasts, NAD(P)H-dependent xylose reductase (XR) catalyzes the reduction of xylose to xylitol. In the present study, XR with varying cofactor specificities was overexpressed in Saccharomyces cerevisiae to screen for efficient xylitol production.

View Article and Find Full Text PDF

In the present study, we report a reverse-phase high-performance liquid chromatography (RP-HPLC) method for separation of the regio-isomers of Glyceryl MonoRicinoleate (GMR) identified using position specificity of lipases. The approaches explored to identify these regio-isomers include LC-mass spectrometry, UV spectroscopy, and selective hydrolysis with lipases. A distinct UV absorption spectrum and values for each isomer were noted, and mass spectral analysis further revealed their molecular weight.

View Article and Find Full Text PDF

Ferulic acid is a fraction of the phenolics present in cereals such as rice and corn as a component of the bran. Substantial amounts of waste bran are generated by the grain processing industry and this can be valorized via extraction, purification and conversion of phenolics to value added chemical products. Alkaline alcohol based extracted and purified ferulic acid from corn bran was converted to vanillic acid using engineered KT2440.

View Article and Find Full Text PDF

Exploiting solar energy for growing algal biomass in waters enriched with farm manures is a holistic method of waste management. The proposed cultivation strategy termed SAR'CENA ('Synergistic Algal Refinery for Circular Economy using Nutrient Analogues), involves integrated cultivation of microalga, Scenedesmus obliquus and marine macroalga, Ulva lactuca in litter to harness biorefinery products. From various litters tested, poultry litter manure (PLM) was most amenable for growth.

View Article and Find Full Text PDF

The metabolic engineering of Chlamydomonas reinhardtii, one of the fastest-growing microalgae, is a potential alternative for enhanced carotenoid productivity. CrtYB (phytoene-β-carotene synthase - PBS) gene from red yeast Xanthophyllomyces dendrorhous encodes for a bifunctional enzyme that harbours both phytoene synthase (psy) and lycopene cyclization (lcyb) activities. Heterologous expression of this bifunctional PBS gene led to 38% enhancement in β-carotene along with 60% increase in the lutein yields under low light conditions of 75 μmol photons m s.

View Article and Find Full Text PDF

Background: Recent trends in bioprocessing have underlined the significance of lignocellulosic biomass conversions for biofuel production. These conversions demand at least 90% energy upgradation of cellulosic sugars to generate renewable drop-in biofuel precursors (H/C ~ 2). Chemical methods fail to achieve this without substantial loss of carbon; whereas, oleaginous biological systems propose a greener upgradation route by producing oil from sugars with 30% theoretical yields.

View Article and Find Full Text PDF
Article Synopsis
  • A consolidated bioprocessing (CBP) approach facilitates the conversion of lignocellulose into chemicals and fuels without the need for costly enzymes, making it a promising method for renewable energy sources.
  • The study engineered two strains of the organism NCIMB 11955 to utilize treated wheat straw, successfully integrating genes for key cellulolytic enzymes, leading to enhanced growth and enzyme activity.
  • The results demonstrated that both engineered strains improved ethanol production when combined with an ethanologenic strain, showing a significant increase in ethanol yield from lignocellulosic biomass in a single-step fermentation process.
View Article and Find Full Text PDF

In the present study, green synthesis of pentaerythritol monoricinoleate (PEMR) was carried out using lipase B immobilized on hydrophobic adsorbent via interfacial activation. Various reaction parameters such as reaction time, organic solvent, molar ratio, the enzyme load, and presence of molecular sieves on pentaerythritol (PE) ester synthesis were systematically studied to yield selective monoester of PE. The strategies (smart use of substrate molar ratio and polar organic solvent) were employed to suppress dimerization of ricinoleic acid (RA) to avoid by-product formation and hence to obtain superior mono-ester yield.

View Article and Find Full Text PDF

Polyricinoleic acid (PRA) is a biodegradable polymer of ricinoleic acid, a hydroxy fatty acid present in castor oil. Depending upon the chain length, this homopolymer finds varied applications in oleochemical and allied industries. In the current research, we have first demonstrated synthesis route for PRA using Tin (II) 2-ethylhexanoate as a catalyst.

View Article and Find Full Text PDF