Eur J Cancer
January 2025
Background: Most patients with small-cell lung cancer (SCLC) present with extensive-stage (ES) disease and have a poor prognosis despite achieving high initial response rates to platinum-based doublet chemotherapy. This study evaluated whether adding hydroxychloroquine (HCQ) to chemotherapy could improve outcomes.
Methods: This was a randomised multicentre phase II trial.
Introduction: Bile duct cancer (cholangiocarcinoma, CCA) has a poor prognosis for patients, and despite recent advances in targeted therapies for other cancer types, it is still treated with standard chemotherapy. Anaplastic lymphoma kinase (ALK) has been shown to be a primary driver of disease progression in lung cancer, and ALK inhibitors are effective therapeutics in aberrant ALK-expressing tumors. Aberrant ALK expression has been documented in CCA, but the use of ALK inhibitors has not been investigated.
View Article and Find Full Text PDFBackground: Muscle weakness is common after injury in athletes and in the presence of hip pathology. It will cause abnormal hip biomechanics and can predict future injury. However, objective measurement of hip muscle strength is difficult to perform accurately and reliably.
View Article and Find Full Text PDFKnee Surg Sports Traumatol Arthrosc
September 2021
Purpose: The aim of this study was investigate the relationship between version and torsional abnormalities of the acetabulum, femur and tibia in patients with symptomatic FAI.
Methods: A systematic review was performed according to PRISMA guidelines using the EMBASE, MEDLINE, PubMed and Cochrane databases. Original research articles evaluating the described version and torsional parameters in FAI were included.
Background: Advanced biliary tract cancer has a poor prognosis. Cisplatin and gemcitabine is the standard first-line chemotherapy regimen, but no robust evidence is available for second-line chemotherapy. The aim of this study was to determine the benefit derived from second-line FOLFOX (folinic acid, fluorouracil, and oxaliplatin) chemotherapy in advanced biliary tract cancer.
View Article and Find Full Text PDFIntroduction: Werner protein (WRN) plays an important role in DNA repair, replication, transcription, and consequently genomic stability via its DNA-helicase and exonuclease activity. Loss of function of WRN is associated with Werner syndrome (WS), which is characterized by premature aging and cancer predisposition. Malignancies that are commonly linked to WS are thyroid carcinoma, melanoma, breast cancer, meningioma, and soft tissue and bone sarcomas.
View Article and Find Full Text PDFBackground: Access to rehabilitation to prevent disability and optimise function is recommended for patients with cancer, including following cancer diagnosis. Models to integrate rehabilitation within oncology services as cancer treatment commences are required, but must be informed by those they are intended to support. We aimed to identify views of patients, carers and clinicians to develop and refine a rehabilitation model to be tested in a feasibility trial for people newly diagnosed with lung cancer or mesothelioma.
View Article and Find Full Text PDFBackground: Cyclin-Dependent Kinases (CDKs) are established anti-cancer drug targets and a new generation of CDK inhibitors are providing clinical benefits to a sub-set of breast cancer patients. We have recently shown that human CDK18 promotes efficient cellular responses to replication stress. In the current study, we have investigated the clinicopathological and functional significance of CDK18 expression levels in breast cancers.
View Article and Find Full Text PDFRECQL1, a key member of the RecQ family of DNA helicases, is required for DNA replication and DNA repair. Two recent studies have shown that germline RECQL1 mutations are associated with increased breast cancer susceptibility. Whether altered RECQL1 expression has clinicopathologic significance in sporadic breast cancers is unknown.
View Article and Find Full Text PDFElevation of the DNA-unwinding helicase RECQL4, which participates in various DNA repair pathways, has been suggested to contribute to the pathogenicity of various human cancers, including gastric cancer. In this study, we addressed the prognostic and chemotherapeutic significance of RECQL4 in human gastric cancer, which has yet to be determined. We observed significant increases in RECQL4 mRNA or protein in >70% of three independent sets of human gastric cancer specimens examined, relative to normal gastric tissues.
View Article and Find Full Text PDFWerner syndrome protein (WRN) is a RecQ helicase that participates in DNA repair, genome stability and cellular senescence. The five human RecQ helicases, RECQL1, Bloom, WRN, RECQL4 and RECQL5 play critical roles in DNA repair and cell survival after treatment with the anticancer drug camptothecin (CPT). CPT derivatives are widely used in cancer chemotherapy to inhibit topoisomerase I and generate DNA double-strand breaks during replication.
View Article and Find Full Text PDFRECQL4 helicase is a molecular motor that unwinds DNA, a process essential during DNA replication and DNA repair. Germ-line mutations in RECQL4 cause type II Rothmund-Thomson syndrome (RTS), characterized by a premature ageing phenotype and cancer predisposition. RECQL4 is widely considered to be a tumour suppressor, although its role in human breast cancer is largely unknown.
View Article and Find Full Text PDFBackground: Ataxia-telangiectasia mutated (ATM), ataxia-telangiectasia mutated and rad3 related (ATR) and DNA-dependent protein kinase catalytic sub-unit (DNA-PKcs) play critical roles in DNA damage response (DDR) by linking DNA damage sensing to DDR effectors that regulate cell cycle progression and DNA repair. Our objective was to evaluate if ATM, ATR and DNA-PKcs expressions could predict response to therapy and clinical outcome in epithelial ovarian cancers.
Methods: We investigated ATM, ATR, and DNA-PKcs expressions in ovarian epithelial cancers [protein expression (n = 194 patients), mRNA expression (n = 156 patients)] and correlated to clinicopathological outcomes as well as expression of X-ray repair cross-complementing protein 1 (XRCC1), cell division cycle-45 (CDC45), cyclin-dependent kinase 1(CDK1) and Ki-67 in tumours.
RECQL5 is a member of the RecQ family of DNA helicases and has key roles in homologous recombination, base excision repair, replication and transcription. The clinicopathological significance of RECQL5 expression in breast cancer is unknown. In this study, we have evaluated RECQL5 mRNA expression in 1977 breast cancers, and RECQL5 protein level in 1902 breast cancers [Nottingham Tenovus series (n = 1650) and ER- cohort (n = 252)].
View Article and Find Full Text PDFRadiation-induced DNA damage activates the DNA damage response (DDR). DDR up-regulation may predict radio-resistance and increase the risk of early local recurrence despite radiotherapy in early stage breast cancers. In 1755 early stage breast cancers, DDR signalling [ATM, ATR, total Ckh1, Chk1 phosphorylated at serine(345) (pChk1), Chk2, p53], base excision repair [PARP1, POLβ, XRCC1, FEN1, SMUG1], non-homologous end joining (Ku70/Ku80, DNA-PKcs) and homologous recombination [RAD51, BRCA1, γH2AX, BLM, WRN, RECQL5, PTEN] protein expression was correlated to time to early local recurrence.
View Article and Find Full Text PDFBackground: DNA methylation (5-methylcytosine (5mC)) patterns are often altered in cancers. Ten-eleven translocation (Tet) proteins oxidise 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). In addition to their presumptive specific biological roles, these oxidised forms of 5mC may serve as intermediates in demethylation process.
View Article and Find Full Text PDFStratification of oestrogen receptor (ER) negative and triple negative breast cancers (TNBCs) is urgently needed. In the current study, a cohort of 880 ER- (including 635 TNBCs) was immuno-profiled for a panel of DNA repair proteins including: Pol β, FEN1, APE1, XRCC1, SMUG1, PARP1, BRCA1, ATR, ATM, DNA-PKcs, Chk1, Chk2, p53, and TOPO2. Multivariate Cox proportional hazards models (with backward stepwise exclusion of these factors, using a criterion of p < 0.
View Article and Find Full Text PDFBloom syndrome helicase (BLM) has key roles in homologous recombination repair, telomere maintenance, and DNA replication. Germ-line mutations in the BLM gene causes Bloom syndrome, a rare disorder characterized by premature aging and predisposition to multiple cancers, including breast cancer. The clinicopathologic significance of BLM in sporadic breast cancers is unknown.
View Article and Find Full Text PDFATM-Chk2 network is critical for genomic stability, and its deregulation may influence breast cancer pathogenesis. We investigated ATM and Chk2 protein levels in two cohorts [cohort 1 (n = 1650) and cohort 2 (n = 252)]. ATM and Chk2 mRNA expression was evaluated in the Molecular Taxonomy of Breast Cancer International Consortium cohort (n = 1950).
View Article and Find Full Text PDFBRCA1, a key factor in homologous recombination (HR) repair may also regulate base excision repair (BER). Targeting BRCA1-BER deficient cells by blockade of ATM and DNA-PKcs could be a promising strategy in breast cancer. We investigated BRCA1, XRCC1 and pol β protein expression in two cohorts (n = 1602 sporadic and n = 50 germ-line BRCA1 mutated) and mRNA expression in two cohorts (n = 1952 and n = 249).
View Article and Find Full Text PDFDNA-dependent protein kinase catalytic subunit (DNA-PKcs), a serine threonine kinase belonging to the PIKK family (phosphoinositide 3-kinase-like-family of protein kinase), is a critical component of the non-homologous end-joining pathway required for the repair of DNA double-strand breaks. DNA-PKcs may be involved in breast cancer pathogenesis. We evaluated clinicopathological significance of DNA-PKcs protein expression in 1,161 tumours and DNA-PKcs mRNA expression in 1,950 tumours.
View Article and Find Full Text PDFOestrogen metabolites can induce oxidative DNA base damage and generate potentially mutagenic apurinic sites (AP sites) in the genomic DNA. If unrepaired, mutagenic AP sites could drive breast cancer pathogenesis and aggressive phenotypes. Human apurinic/apyrimidinic endonuclease 1 (APE1) is a key DNA base excision repair (BER) protein and essential for processing AP sites generated either directly by oestrogen metabolites or during BER of oxidative base damage.
View Article and Find Full Text PDF