A precise streamflow forecast is crucial in hydrology for flood alerts, water quantity and quality management, and disaster preparedness. Machine learning (ML) techniques are commonly employed for hydrological prediction; however, they still face certain drawbacks, such as the need to optimize the appropriate predictors, the ability of the models to generalize across different time horizons, and the analysis of high-dimensional time series. This research aims to address these specific drawbacks by developing a novel framework for streamflow forecasting.
View Article and Find Full Text PDFHydropower plants are known as major renewable energy sources, usually used to meet energy demand during peak periods. The performance of hydropower reservoir systems is mainly affected by their operating rules, thus, optimizing these rules results in higher and/or more reliable energy production. Due to the complex nonlinear, nonconvex, and multivariable characteristics of the hydropower system equations, deriving the operating rules of these systems remains a challenging issue in multi-reservoir systems optimization.
View Article and Find Full Text PDFPrecise prediction of water quality parameters plays a significant role in making an early alert of water pollution and making better decisions for the management of water resources. As one of the influential indicative parameters, electrical conductivity (EC) has a crucial role in calculating the proportion of mineralization. In this study, the integration of an adaptive hybrid of differential evolution and particle swarm optimization (A-DEPSO) with adaptive neuro fuzzy inference system (ANFIS) model is adopted for EC prediction.
View Article and Find Full Text PDFUndeniably, there is a link between water resources and people's lives and, consequently, economic development, which makes them vital in health and the environment. Proper water quality forecasting time series has a crucial role in giving on-time warnings for water pollution and supporting the decision-making of water resource management. The principal aim of this study is to develop a novel and cutting-edge ensemble data intelligence model named the weighted exponential regression and hybridized by gradient-based optimization (WER-GBO).
View Article and Find Full Text PDF