Publications by authors named "Arvid Odland"

Optimal foraging models predict that individual animals will optimize net energy gain by intensifying forage activity and/or reducing forage energy cost. Then, the free distribution model predicts an animal's distribution in a patchy landscape will match the distribution of the resources. If not modified by other factors, such patterns may be expected to be particularly explicit in variable and extreme, forage-limited, and patchy environments, notably alpine and Arctic environments during winter.

View Article and Find Full Text PDF

The boundary between the boreal and arctic biomes in northwest Europe has been a matter of debate for many years. Some authors consider that the boundary is marked by the northern limit of tree growth in the northernmost Norwegian mainland. In this study we have collected air and soil temperature data from 37 heath stands from northern Finnmark (71°N), the northernmost part of the Norwegian mainland, through Bear Island (74°N) in the Barents sea, to Adventsdalen (78)°N (in Spitsbergen) in Svalbard archipelago.

View Article and Find Full Text PDF

Globally accelerating trends in societal development and human environmental impacts since the mid-twentieth century are known as the Great Acceleration and have been discussed as a key indicator of the onset of the Anthropocene epoch . While reports on ecological responses (for example, changes in species range or local extinctions) to the Great Acceleration are multiplying , it is unknown whether such biotic responses are undergoing a similar acceleration over time. This knowledge gap stems from the limited availability of time series data on biodiversity changes across large temporal and geographical extents.

View Article and Find Full Text PDF

Mammalian herbivores have important top-down effects on ecological processes and landscapes by generating vegetation changes through grazing and trampling. For free-ranging herbivores on large landscapes, trampling is an important ecological factor. However, whereas grazing is widely studied, low-intensity trampling is rarely studied and quantified.

View Article and Find Full Text PDF

The increased spread of insect outbreaks is among the most severe impacts of climate warming predicted for northern boreal forest ecosystems. Compound disturbances by insect herbivores can cause sharp transitions between vegetation states with implications for ecosystem productivity and climate feedbacks. By analysing vegetation plots prior to and immediately after a severe and widespread outbreak by geometrid moths in the birch forest-tundra ecotone, we document a shift in forest understorey community composition in response to the moth outbreak.

View Article and Find Full Text PDF

Recent studies from mountainous areas of small spatial extent (<2500 km(2) ) suggest that fine-grained thermal variability over tens or hundreds of metres exceeds much of the climate warming expected for the coming decades. Such variability in temperature provides buffering to mitigate climate-change impacts. Is this local spatial buffering restricted to topographically complex terrains? To answer this, we here study fine-grained thermal variability across a 2500-km wide latitudinal gradient in Northern Europe encompassing a large array of topographic complexities.

View Article and Find Full Text PDF

The main aim of our study was to investigate seasonal variation in the frequency of abnormal anaphases and mitotic index values in wild populations of herb-Paris (Paris quadrifolia L., Trilliaceae). Plant material was collected in the year 2000 in Norway and in the year 2001 in Lithuania.

View Article and Find Full Text PDF