Publications by authors named "Arvid Herrmann"

Article Synopsis
  • Cells coordinate development and defense by sensing multiple signals, and a specific pathway for plant stomatal development is connected to the immunity pathway, although the details of this connection are unclear.
  • Researchers discovered a small molecule, kC9, that promotes excessive stomatal differentiation by inhibiting a key receptor-kinase pathway, specifically targeting the MAP kinase MPK6.
  • Interestingly, activating immune signaling with a bacterial peptide can counteract kC9's effects on stomatal development, revealing that the interplay between developmental and immune signals is managed by receptor availability and helps maintain signal specificity.
View Article and Find Full Text PDF

Plants develop in the absence of cell migration. As such, cell division and differentiation need to be coordinated for functional tissue formation. Cellular valves on the plant epidermis, stomata, are generated through a stereotypical sequence of cell division and differentiation events.

View Article and Find Full Text PDF

Differentiation of specialized cell types requires precise cell-cycle control. Plant stomata are generated through asymmetric divisions of a stem-cell-like precursor followed by a single symmetric division that creates paired guard cells surrounding a pore. The stomatal-lineage-specific transcription factor MUTE terminates the asymmetric divisions and commits to differentiation.

View Article and Find Full Text PDF

Stomata are small pores on the surface of land plants that facilitate gas exchange for photosynthesis while minimizing water loss. The function of stomata is pivotal for plant growth and survival. Intensive research on the model plant Arabidopsis (Arabidopsis thaliana) has discovered key peptide signaling pathways, transcription factors, and polarity components that together drive proper stomatal development and patterning.

View Article and Find Full Text PDF

The bipolar mitotic spindle is a highly conserved structure among eukaryotes that mediates chromosome alignment and segregation. Spindle assembly and size control are facilitated by force-generating microtubule-dependent motor proteins known as kinesins. In animals, kinesin-12 cooperates with kinesin-5 to produce outward-directed forces necessary for spindle assembly.

View Article and Find Full Text PDF

Plant development and morphology relies on the accurate insertion of new cell walls during cytokinesis. However, how a plant cell correctly orients a new wall is poorly understood. Two kinesin class-12 members, phragmoplast orienting kinesin 1 (POK1) and POK2, are involved in the process, but how these molecular machines work is not known.

View Article and Find Full Text PDF

Kinesins are versatile nano-machines that utilize variable non-motor domains to tune specific motor microtubule encounters. During plant cytokinesis, the kinesin-12 orthologs, PHRAGMOPLAST ORIENTING KINESIN (POK)1 and POK2, are essential for rapid centrifugal expansion of the cytokinetic apparatus, the phragmoplast, toward a pre-selected cell plate fusion site at the cell cortex. Here, we report on the spatio-temporal localization pattern of POK2, mediated by distinct protein domains.

View Article and Find Full Text PDF

Cell shape is defined by the surrounding cell walls in plants. Thus, spatial control over cell division planes and cell expansion polarity are essential to maintain cell morphology. In eukaryotes, cell polarity and expansion are controlled by Rho GTPase signalling, regulating cytoskeletal reorganization and vesicle trafficking(1).

View Article and Find Full Text PDF

Plant cells are confined by a network of cellulosic walls that imposes rigid control over the selection of division plane orientations, crucial for morphogenesis and genetically regulated. While in animal cells and yeast, the actin cytoskeleton is instrumental in the execution of cytokinesis, in plant cells the microtubule cytoskeleton is taking the lead in spatially controlling and executing cytokinesis by the formation of two unique, plant-specific arrays, the preprophase band (PPB) and the phragmoplast. The formation of microtubule arrays in plant cells is contingent on acentrosomal microtubule nucleation.

View Article and Find Full Text PDF