Publications by authors named "Arutjunyan A"

Maternal hyperhomocysteinemia (HHcy) is a risk factor for intrauterine growth restriction presumably caused by a decrease in the placental transport of nutrients. We investigated the effect of experimental HHcy induced by daily methionine administration to pregnant rats on the free amino acid levels in the maternal and fetal blood, as well as on morphological and biochemical parameters associated with the amino acid transport through the placenta. HHcy caused an increase in the levels of most free amino acids in the maternal blood on gestational day 20, while the levels of some amino acids in the fetal blood were decreased.

View Article and Find Full Text PDF

Maternal hyperhomocysteinemia (HCY) induced by genetic defects in methionine cycle enzymes or vitamin imbalance is known to be a pathologic factor that can impair embryonal brain development and cause long-term consequences in the postnatal brain development as well as changes in the expression of neuronal genes. Studies of the gene expression on this model requires the selection of optimal housekeeping genes. This work aimed to analyze the expression stability of housekeeping genes in offspring brain.

View Article and Find Full Text PDF

According to modern view, susceptibility to diseases, specifically to cognitive and neuropsychiatric disorders, can form during embryonic development. Adverse factors affecting mother during the pregnancy increase the risk of developing pathologies. Despite the association between elevated maternal blood homocysteine (Hcy) and fetal brain impairments, as well as cognitive deficits in the offspring, the role of brain plasticity in the development of these pathologies remains poorly studied.

View Article and Find Full Text PDF

Numerous studies have shown that various adverse factors of different nature and action mechanisms have similar negative influence on placental angiogenesis, resulting in insufficiency of placental blood supply. One of the risk factors for pregnancy complications with placental etiology is an increased level of homocysteine in the blood of pregnant women. However, the effect of hyperhomocysteinemia (HHcy) on the development of the placenta and, in particular, on the formation of its vascular network is at present poorly understood.

View Article and Find Full Text PDF

In this review, an attempt was made to substantiate the possibility for neurotrophins to be involved in the development of immune tolerance based on data accumulated on neurotrophin content and receptor expression in the trophoblast and immune cells, in particular, in natural killer cells. Numerous research results are reviewed to show that the expression and localization of neurotrophins along with their high-affinity tyrosine kinase receptors and low-affinity p75NTR receptor in the mother-placenta-fetus system indicate the important role of neurotrophins as binding molecules in regulating the crosstalk between the nervous, endocrine, and immune systems in pregnancy. An imbalance between these systems can occur with tumor growth and pathological processes observed in pregnancy complications and fetal development anomalies.

View Article and Find Full Text PDF

Maternal hyperhomocysteinemia causes the disruption of placental blood flow and can lead to serious disturbances in the formation of the offspring's brain. In the present study, the effects of prenatal hyperhomocysteinemia (PHHC) on the neuronal migration, neural tissue maturation, and the expression of signaling molecules in the rat fetal brain were described. Maternal hyperhomocysteinemia was induced in female rats by per os administration of 0.

View Article and Find Full Text PDF

The work is devoted to the analysis of the education digitalization negative effects and the possibilities of their prevention consideration. The urgency of this problem in the modern conditions of combating the pandemic of the new coronavirus infection and moving a significant part of education and leisure to the virtual space is noted. Against the background of a deficit in physical activity and an increase in the information consumption duration, the participants in the experiment showed a significant increase in the frequency of mental and physical maladjustment symptoms occurrence, a decrease in performance indicators and a deterioration in the biological age parameters.

View Article and Find Full Text PDF

The article presents current views on maternal hyperhomocysteinemia (HHcy) as an important factor causing prenatal stress and impaired nervous system development in fetuses and newborns in early ontogenesis, as well as complications in adulthood. Experimental data demonstrate that prenatal HHcy (PHHcy) affects the morphological maturation of the brain and activity of its neurotransmitter systems. Cognitive deficit observed in the offspring subjected to PHHcy in experimental studies can presumably cause the predisposition to various neurodegenerative diseases, as the role of maternal HHcy in the pathogenesis such diseases has been proven in clinical studies.

View Article and Find Full Text PDF

Maternal hyperhomocysteinemia is one of the common complications of pregnancy that causes offspring cognitive deficits during postnatal development. In this study, we investigated the effect of prenatal hyperhomocysteinemia (PHHC) on inflammatory, glial activation, and neuronal cell death markers in the hippocampus of infant rats. Female Wistar rats received L-methionine (0.

View Article and Find Full Text PDF

Aging is a complex biological process, a major aspect of which is the accumulation of somatic changes throughout life. Cellular senescence is a condition in which cells undergo an irreversible cell cycle arrest in response to various cellular stresses. Once the cells begin to senesce, they become more resistant to any mutagens, including oncogenic factors.

View Article and Find Full Text PDF

Maternal hyperhomocysteinemia is one of the common complications of pregnancy that causes offspring cognitive deficits during postnatal development. In the present work, we evaluated the effect of prenatal hyperhomocysteinemia on structural and ultrastructural organization, neuronal and glial cell number, apoptosis (caspase-3 content and activity), inflammatory markers (tumor necrosis factor-α, interleukin-6, and interleukin-1β), and p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation in the offspring brain cortex in early ontogenesis. Wistar female rats received methionine (0.

View Article and Find Full Text PDF

Prenatal hyperhomocysteinemia (PHHC) in pregnant rats was induced by chronic L-methionine loading, resulting in a significant increase in the L-homocysteine content both in the mothers' blood and blood and brain of fetuses. Significant decrease in the weight of the placenta, fetus, and fetal brain was detected by the morphometric studies on day 20 of pregnancy. PHHC also activated maternal immune system due to the increase in the content of proinflammatory interleukin-1β in the rat blood and fetal part of the placenta.

View Article and Find Full Text PDF

Studies of interactions between natural killer (NK) cells and trophoblasts and identification of conditions for the NK cells to perform their cytotoxic function are of fundamental and practical importance for understanding their role in the development of pathological processes and complications during pregnancy. In this study, we examined changes in the content of caspases and studied activation of these enzymes in Jeg-3 trophoblasts in various models of their coculturing with NK-92 cells and demonstrated the necessity of direct contact between these cell populations for the activation of caspase-8 and caspase-3 in the trophoblasts. Contact coculturing of the two cell lines resulted in the appearance of the cytotoxic protein granzyme B in Jeg-3 cells that was accompanied by a decrease in the content of this enzyme in NK-92 cells.

View Article and Find Full Text PDF

We have examined 103 patients at the age from 28 to 78 with the newly diagnosed oncological disease at stages II-IV before the beginning of anticancer treatment. The identification of the signs of the cachexia syndrome and its stage (pre-cachexia, cachexia) were carried out in the accordance with the CASCO criteria (2011) and taking into the account the age of the patients. The cardiovascular infringements were found to be comorbid to the oncological disease significantly more often in patients with signs of cachexia syndrome on the pre-cachexia stage and the total index of cardiovascular disorders in oncological patients increases with the severity of cachexia.

View Article and Find Full Text PDF

Industrial xenobitics, as well as endogenous damaging factors, such as L-homocysteine, are a well-known source of reactive oxygen species that disrupt biological processes. Among many others, luteinizing hormone releasing hormone synthesis and secretion mediated by a variety of neurotransmitters, which are under control of the hypothalamus and pineal gland, may be put in peril by reactive oxygen species. Their formation can be one of the reasons for the reproductive function shutdown in ageing as the generic response to the damaging factors independent of their nature.

View Article and Find Full Text PDF

The article presents a detailed analysis of correlations between the content of a variety of biogenic amines in the hypothalamic structures responsible for the luteinizing hormone releasing hormone synthesis and secretion (the medial preoptic area and median eminence) and such independent factors as total L-homocysteine plasma level elevation induced by L-methionine loading and aging. Both a nature and a pattern of changes in oxidative stress profile were evaluated. It was shown that ageing, when compared to hyperhomocysteinemia, is a determining factor influencing biogenic amine content in the studied hypothalamic structures.

View Article and Find Full Text PDF

The data presented have shown the different effect of hyperhomocysteinemia (induced by 0,12-0,15 mg of methionine loading per os during 30 days) on monoamines content in hypothalamus and hippocampus of young (6-7 month) and old (20-22 month) female rats. It has been established that the level of catecholamines (noradrenaline, dopamine), 5 oxitryptamine and 5 oxyindolacetic acid in hypothalamic areas responsible for synthesis and secretion of gonadoliberin (medial preoptic area and medial eminence with arcuate nuclei) is considerable less in old animals compared with young ones. These data are in agreement with the low content of gonadoliberin found by us in medial eminence with arcuate nuclei.

View Article and Find Full Text PDF

Potential neuroprotective effects of the pineal gland hormone melatonin and peptide preparation epitalon on estrous cycles and the central regulation of reproduction in female rats exposed to unfavourable environmental factors have been studied. Estrous cycles of young, mature and aging rats exposed to light pollution were described. The diurnal dynamics and daily mean content of biogenic amines in the hypothalamic areas responsible for gonadotropin-releasing hormone synthesis and secretion in animals of different age groups were investigated.

View Article and Find Full Text PDF

Catecholamines play an important role in the hypothalamic regulation of the synthesis and secretion of gonadotropin- releasing hormone, or gonadoliberin. We have shown that melatonin and the pineal gland peptides (epithalamine and epitalon) exert a correcting influence on the diurnal dynamics of norepinephrine (NE) in the medial preoptic area (MPA) and of dopamine (DA) in the median eminence with arcuate nuclei (ME-Arc) disturbed by single administration of the neurotoxic xenobiotic 1,2-dimethylhydrazine (DMH) in female rats. It has been found that experiments with DMH administration can be used as an animal model of female reproductive system premature aging.

View Article and Find Full Text PDF

The offspring of rats with experimental hyperhomocysteinemia caused by alimentary loading with dietary methionine within pregnancy has been studied. Using pinealon (Glu-Asp-Arg) under these conditions was found to result in the offspring cognitive function being improved significantly and their cerebellum neurons becoming more resistant to oxidative stress. This may be proved by the fact that the administration of pinealon to pregnant rats loaded with methionine improved their offspring spatial orientation and learning ability and decreased both reactive oxygen species accumulation and the number of necrotic cells in the population of the neurons isolated from the cerebellum of the offspring developed under the prenatal hyperhomocysteinemia.

View Article and Find Full Text PDF

The synthetic tripeptide pinealon (Glu-Asp-Arg) demonstrates dose-dependent restriction of reactive oxygen species (ROS) accumulation in cerebellar granule cells, neutrophils, and pheochromocytoma (PC12) cells, induced by oxidative stress stimulated by receptor-dependent or -independent processes. At the same time, pinealon decreases necrotic cell death measured by the propidium iodide test. The protective effect of pinealon is accompanied with a delayed time course of ERK 1/2 activation and modification of the cell cycle.

View Article and Find Full Text PDF

Background: The reason for increased peripheral blood leukocyte (PBL) nitric oxide (NO) production in patients with multiple sclerosis (MS) is unknown.

Objective: To investigate whether PBL NO production is related to measures of oxidative stress.

Methods: PBL nitrite, diene conjugates (DC, a measure of undergone oxidative stress), antiradical activity (ARA) and antioxidant acitvity (AOA) were measured in 35 healthy control persons and 80 patients with MS.

View Article and Find Full Text PDF