Urinary tract infections are a common condition affecting people globally, with multidrug-resistant (MDR) Escherichia coli (E. coli) being a major causative agent. Antimicrobial susceptibility profiling was performed using the VITEK 2 automated system for 1254 E.
View Article and Find Full Text PDFPhytother Res
April 2023
Emerging evidence on molecular biology related to tumors, inflammation, and immunity, highlights their architectural commonality shifting cancer treatment paradigms toward more economical prevention than treatment. Statistical surveys reveal exponentially growing herbal drug supplementation in cancer worldwide as vast pre-clinical and clinical data unravel their multi-mechanistic pharmacology. The integrative oncological approach calls for more "holistic" principles to be amalgamated into cancer care.
View Article and Find Full Text PDFNitric Oxide (NO) is a highly diffusible, ubiquitous signaling molecule and a free radical that is naturally synthesized by our body. The pleiotropic effects of NO in biological systems are due to its reactivity with different molecules, such as molecular oxygen (O), superoxide anion, DNA, lipids, and proteins. There are several contradictory findings in the literature pertaining to its role in oncology.
View Article and Find Full Text PDFAdv Protein Chem Struct Biol
September 2021
The development of cancer is a complex phenomenon driven by various extrinsic as well as intrinsic risk factors including epigenetic modifications. These post-translational modifications are encountered in diverse cancer cells and appear for a relatively short span of time. These changes can significantly affect various oncogenic genes and proteins involved in cancer initiation and progression.
View Article and Find Full Text PDFLong non-coding RNAs (lncRNAs) are a novel class of gene regulators playing multifaceted roles in physiological processes as well as pathological conditions such as cancer. Cancer stem cells (CSCs) are a small subset of tumor cells that constitute the origin and development of various malignant tumors. CSCs have been identified in a wide spectrum of human tumors and could act as a critical link underlying the processes of tumor metastasis and recurrence.
View Article and Find Full Text PDFThe tumor necrosis factor-α-induced protein 8-like (TIPE/TNFAIP8) family is a recently identified family of proteins that is strongly associated with the regulation of immunity and tumorigenesis. This family is comprised of four members, namely, tumor necrosis factor-α-induced protein 8 (TIPE/TNFAIP8), tumor necrosis factor-α-induced protein 8-like 1 (TIPE1/TNFAIP8L1), tumor necrosis factor-α-induced protein 8-like 2 (TIPE2/TNFAIP8L2), and tumor necrosis factor-α-induced protein 8-like 3 (TIPE3/TNFAIP8L3). Although the proteins of this family were initially described as regulators of tumorigenesis, inflammation, and cell death, they are also found to be involved in the regulation of autophagy and the transfer of lipid secondary messengers, besides contributing to immune function and homeostasis.
View Article and Find Full Text PDFA prior screening programme carried out using MTT assay by our group identified a series of novel benzimidazole derivatives, among which Methyl 2-(5-fluoro-2-hydroxyphenyl)-1H- benzo[d]imidazole-5-carboxylate (MBIC) showed highest anticancer efficacy compared to that of chemotherapeutic agent, cisplatin. In the present study, we found that MBIC inhibited cell viability in different hepatocellular carcinoma (HCC) cell lines without exerting significant cytotoxic effects on normal liver cells. Annexin V-FITC/PI flow cytometry analysis and Western blotting results indicated that MBIC can induce apoptosis in HCC cells, which was found to be mediated through mitochondria associated proteins ultimately leading to the activation of caspase-3.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) is one of the most common forms of liver cancer diagnosed worldwide. HCC occurs due to chronic liver disease and is often diagnosed at advanced stages. Chemotherapeutic agents such as doxorubicin are currently used as first-line agents for HCC therapy, but these are non-selective cytotoxic molecules with significant side effects.
View Article and Find Full Text PDFFrequent activation of phosphatidylinositol-3 kinases (PI3K)/Akt/mTOR signaling pathway in gastric cancer (GC) is gaining immense popularity with identification of mutations and/or amplifications of PIK3CA gene or loss of function of PTEN, a tumor suppressor protein, to name a few; both playing a crucial role in regulating this pathway. These aberrations result in dysregulation of this pathway eventually leading to gastric oncogenesis, hence, there is a need for targeted therapy for more effective anticancer treatment. Several inhibitors are currently in either preclinical or clinical stages for treatment of solid tumors like GC.
View Article and Find Full Text PDFChromatin acetylation is attributed with distinct functional relevance with respect to gene expression in normal and diseased conditions thereby leading to a topical interest in the concept of epigenetic modulators and therapy. We report here the identification and characterization of the acetylation inhibitory potential of an important dietary flavonoid, luteolin. Luteolin was found to inhibit p300 acetyltransferase with competitive binding to the acetyl CoA binding site.
View Article and Find Full Text PDFSignal Transducers and Activators of Transcription (STATs) comprise an important class of transcription factors that have been implicated in a wide variety of essential cellular functions related to proliferation, survival, and angiogenesis. Among various STAT members, STAT3 is frequently overexpressed in tumor cells as well as tissue samples, and regulates the expression of numerous oncogenic genes controlling the growth and metastasis of tumor cells. The current review briefly discusses the importance of STAT3 as a potential target for cancer therapy and also provides novel insights into various classes of existing pharmacological inhibitors of this transcription factor that can be potentially developed as anti-cancer drugs.
View Article and Find Full Text PDFMol Cell Endocrinol
February 2015
Pigment epithelium-derived factor (PEDF) is an anti-angiogenic, immunomodulatory, and neurotrophic serine protease inhibitor protein. PEDF is evolving as a novel metabolic regulatory protein that plays a causal role in insulin resistance. Insulin resistance is the central pathogenesis of metabolic disorders such as obesity, type 2 diabetes mellitus, polycystic ovarian disease, and metabolic syndrome, and PEDF is associated with them.
View Article and Find Full Text PDFMalignant gliomas have a highly tumorigenic subpopulation, termed cancer stem cells (CSCs), that drives tumor formation and proliferation. CSCs possess inherent resistance mechanisms against radiation- and chemotherapy-induced cancer cell death, enabling them to survive and initiate tumor recurrence. We examined the effect of secreted frizzled-related protein 4 (sFRP4), a Wnt signaling antagonist, in chemosensitizing the glioma cell line U138MG and glioma stem cells (GSCs) enriched from U138MG to chemotherapeutics.
View Article and Find Full Text PDFBackground: Ovarian cancer is one of the most lethal malignancies in women, as it is frequently detected at an advanced stage, and cancers often become refractory to chemotherapy. Evidence suggests that dysregulation of pro-apoptotic genes plays a key role in the onset of chemoresistance. The secreted Frizzled-Related Protein (sFRP) family is pro-apoptotic and also a negative modulator of the Wnt signalling cascade.
View Article and Find Full Text PDFSecreted frizzled-related protein 4 (sFRP4) is a Wnt signaling antagonist. Classically, sFRP4 antagonizes the canonical Wnt signaling pathway, resulting in decreased cellular proliferation and increased apoptosis. Recent research from our laboratory has established that sFRP4 inhibits angiogenesis by decreasing proliferation, migration, and tube formation of endothelial cells.
View Article and Find Full Text PDFMol Cell Endocrinol
October 2012
Sphingolipid mediators such as ceramide are pleiotropic regulators of cellular growth, differentiation and apoptosis. We investigated the role of ceramide biosynthesis, metabolism and actions in term human cytotrophoblasts syncytialized over 7 days in culture. Intracellular C16 ceramide levels increased modestly after 3 days in culture, then declined.
View Article and Find Full Text PDFSphingosine and sphingosine-1-phosphate (S1P) are involved in regulating cell differentiation. This study postulated that changes in sphingolipid biosynthesis and metabolism are important in trophoblast syncytialization and therefore examined the production, metabolism and actions of sphingosine and S1P during spontaneous trophoblast differentiation and fusion in vitro. Significant declines in intracellular sphingosine concentration (P≤0.
View Article and Find Full Text PDF2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a highly toxic pollutant ubiquitously present in the environment. Most of the toxic effects of TCDD are believed to be mediated by high-affinity binding to the aryl hydrocarbon receptor (AhR) and subsequent effects on gene transcription. TCDD causes cancer in multiple tissues in different animal species and is classified as a class 1 human carcinogen.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2008
The skin provides vital protection from infection and dehydration. Maintenance of the skin is through a constant program of proliferation, differentiation and apoptosis of epidermal cells, whereby proliferating cells in the basal layer differentiating to form the keratinized, anucleated stratum corneum. The WNT signalling pathway is known to be important in the skin.
View Article and Find Full Text PDF