The development of organic/inorganic metal halide perovskites has seen unprecedent growth since their first recognition for applications in optoelectronic devices. However, their thermodynamic stability and toxicity remains a challenge considering wide-scale deployment in the future. This spurred an interest in search of perovskite-inspired materials which are expected to retain the advantageous material characteristics of halide perovskites, but with high thermodynamic stability and composed of earth-abundant and low toxicity elements.
View Article and Find Full Text PDFGroup III-V semiconductor multi-junction solar cells are widely used in concentrated-sun and space photovoltaic applications due to their unsurpassed power conversion efficiency and radiation hardness. To further increase the efficiency, new device architectures rely on better bandgap combinations over the mature GaInP/InGaAs/Ge technology, with Ge preferably replaced by a 1.0 eV subcell.
View Article and Find Full Text PDFSurfaces of semiconducting materials excited by femtosecond laser pulses emit electromagnetic waves in the terahertz (THz) frequency range, which by definition is the 0.1-10 THz region. The nature of terahertz radiation pulses is, in the majority of cases, explained by the appearance of ultrafast photocurrents.
View Article and Find Full Text PDFBismuth films with thicknesses between 6 and ∼30 nm were grown on Si (111) substrate by molecular beam epitaxy (MBE). Two main phases of bismuth - α-Bi and β-Bi - were identified from high-resolution X-ray diffraction (XRD) measurements. The crystal structure dependencies on the layer thicknesses of these films were analyzed.
View Article and Find Full Text PDFThinner than 10 nm layers of bismuth (Bi) were grown on (111) Si substrates by molecular beam epitaxy. Terahertz (THz) radiation pulses from these layers excited by tunable wavelength femtosecond optical pulses were measured. THz emission sets on when the photon energy exceeds 0.
View Article and Find Full Text PDFTerahertz radiation pulses emitted after exciting semiconductor heterostructures by femtosecond optical pulses were used to determine the electron energy band offsets between different constituent materials. It has been shown that when the photon energy is sufficient enough to excite electrons in the narrower bandgap layer with an energy greater than the conduction band offset, the terahertz pulse changes its polarity. Theoretical analysis performed both analytically and by numerical Monte Carlo simulation has shown that the polarity inversion is caused by the electrons that are excited in the narrow bandgap layer with energies sufficient to surmount the band offset with the wide bandgap substrate.
View Article and Find Full Text PDFElectron dynamics in the polycrystalline bismuth films were investigated by measuring emitted terahertz (THz) radiation pulses after their photoexcitation by tunable wavelength femtosecond duration optical pulses. Bi films were grown on metallic Au, Pt, and Ag substrates by the electrodeposition method with the Triton X-100 electrolyte additive, which allowed us to obtain more uniform films with consistent grain sizes on any substrate. It was shown that THz pulses are generated due to the spatial separation of photoexcited electrons and holes diffusing from the illuminated surface at different rates.
View Article and Find Full Text PDFThe distribution of alloyed atoms in semiconductors often deviates from a random distribution which can have significant effects on the properties of the materials. In this study, scanning transmission electron microscopy techniques are employed to analyze the distribution of Bi in several distinctly MBE grown GaAsBi alloys. Statistical quantification of atomic-resolution HAADF images, as well as numerical simulations, are employed to interpret the contrast from Bi-containing columns at atomically abrupt (001) GaAs-GaAsBi interface and the onset of CuPt-type ordering.
View Article and Find Full Text PDFThe dilute bismide alloy GaAsBi has drawn significant attention from researchers interested in its fundamental properties and the potential for infrared optoelectronics applications. To extend the study of bismides, molecular-beam heteroepitaxy of nominally 1.0 eV bandgap bismide on Ge substrates is comprehensively investigated.
View Article and Find Full Text PDFSpectral dependence of terahertz emission is a sensitive tool to analyze the structure of conduction band of semiconductors. In this work, we investigate the excitation spectra of THz pulses emitted from MOCVD-grown InN and InGaN epitaxial layers with indium content of 16%, 68%, and 80%. In InN and indium-rich InGaN layers we observe a gradual saturation of THz emission efficiency with increasing photon energy.
View Article and Find Full Text PDFWe demonstrate that the rectifying field effect transistor, biased to the subthreshold regime, in a large signal regime exhibits a super-linear response to the incident terahertz (THz) power. This phenomenon can be exploited in a variety of experiments which exploit a nonlinear response, such as nonlinear autocorrelation measurements, for direct assessment of intrinsic response time using a pump-probe configuration or for indirect calibration of the oscillating voltage amplitude, which is delivered to the device. For these purposes, we employ a broadband bow-tie antenna coupled Si CMOS field-effect-transistor-based THz detector (TeraFET) in a nonlinear autocorrelation experiment performed with picoseconds-scale pulsed THz radiation.
View Article and Find Full Text PDFFormation of bismuth nanocrystals in GaAsBi layers grown by molecular beam epitaxy at 330 °C substrate temperature and post-growth annealed at 750 °C is reported. Superlattices containing alternating 10 nm-thick GaAsBi and AlAs layers were grown on semi-insulating GaAs substrate. AlAs layers have served as diffusion barriers for Bi atoms, and the size of the nanoclusters which nucleated after sample annealing was correlating with the thickness of the bismide layers.
View Article and Find Full Text PDFThe unique features of nanowires (NW), such as the high aspect ratio and extensive surface area, are expected to play a key role in the development of very efficient semiconductor surface emitters in the terahertz (THz) spectral range. Here, we report on optically excited THz emission from catalyst-free grown arrays of intrinsically n-type InAs NWs using THz time-domain spectroscopy. Depending on the aspect ratio, the THz emission efficiency of the n-type InAs NWs is found to be up to ∼3 times stronger than that of bulk p-type InAs, known as currently the most efficient semiconductor-based THz surface emitter.
View Article and Find Full Text PDF