Objectives: Copper oxide nanoparticles (CuO NPs) promoting anticancer activity may be due to the regulation of various classes of histone deacetylases (HDACs).
Results: Green-synthesized CuO NPs significantly arrested total HDAC level and also suppressed class I, II and IV HDACs mRNA expression in A549 cells. A549 cells treated with CuO NPs downregulated oncogenes and upregulated tumor suppressor protein expression.
Histone deacetylases (HDACs) play an important role in the epigenetic regulation of gene expression through their effects on the compact chromatin structure. In clinical studies, several classes of histone deacetylase inhibitors (HDACi) have demonstrated potent anticancer activities with metal complexes. Hence, we synthesized cadmium-proline complexes using both the D- and L-isomers of proline and evaluated their biological activities by observing the efficiency of their inhibition of HDAC activity, ability to reduce the expression of HDAC isoforms in A549 cells and effect on apoptosis.
View Article and Find Full Text PDFHistone deacetylases (HDACs) are a group of epigenetic enzymes that control gene expression through their repressive influence on histone deacetylation transcription. HDACs are probable therapeutic targets for cancer treatment, spurring the progress of different types of HDAC inhibitors. Further, natural-source-based derived bioactive compounds possess HDAC inhibitor property.
View Article and Find Full Text PDF