Electron spin polarization is identified as a promising avenue for enhancing the oxygen evolution reaction (OER), which is the bottleneck that limits the energy efficiency of water-splitting. Here, we report that both ferrimagnetic (f-FeO) and superparamagnetic iron oxide (s-FeO) catalysts can exhibit external magnetic field (Hext)-induced OER enhancement, and the activity is proportional to their intrinsic magnetic moment. Additionally, the chirality-induced spin selectivity (CISS) effect was utilized in synergy with Hext to get a maximum enhancement of up to 89% improvement in current density (at 1.
View Article and Find Full Text PDFTailoring the curvature-directed lattice strain in GNRs along with optimal surface anchoring of molybdenum disulfide (MoS) quantum dots (QDs) can lead to a unique heterostructure with Pt-like HER activity (onset potential -60 mV). The curvature-induced electronic charge redistribution at the curved region in the graphene nanoribbons allows a facile GNR-MoS interfacial charge transfer in the heterostructure, making the interfacial sulfur (S) more active towards the HER. The density functional theory (DFT) calculations confirmed electronically activated interfacial S-based catalytic centers in the curved GNR-based heterostructure leading to Pt-like HER activity.
View Article and Find Full Text PDFThe enhanced safety, superior energy, and power density of rechargeable metal-air batteries make them ideal energy storage systems for application in energy grids and electric vehicles. However, the absence of a cost-effective and stable bifunctional catalyst that can replace expensive platinum (Pt)-based catalyst to promote oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) at the air cathode hinders their broader adaptation. Here, it is demonstrated that Tin (Sn) doped β-gallium oxide (β-Ga O ) in the bulk form can efficiently catalyze ORR and OER and, hence, be applied as the cathode in Zn-air batteries.
View Article and Find Full Text PDFThe objective of the current study is to evaluate both the positive and negative effects of manganese-doped graphene quantum dots (GQD-Mn) on Capsicum annuum L. grown under salt stress. GQD-Mn was synthesized, characterized, and foliar-applied (250 mg/L, 120 mg/L, 60 mg/L) to C.
View Article and Find Full Text PDFA new isolation protocol was recently reported for highly purified metallic Fullertubes D -C , D -C , and D -C which exhibit unique electronic features. Here, we report the oxygen reduction electrocatalytic behavior of C , C (spheroidal fullerenes), and C , C , and C (tubular fullerenes) using a combination of experimental and theoretical approaches. C (a metal-free catalyst) displayed remarkable oxygen reduction reaction (ORR) activity, with an onset potential of 0.
View Article and Find Full Text PDFFullerene-based low-dimensional (LD) heterostructures have emerged as excellent energy conversion materials. We constructed van der Waals 1T-MoS/C 0D-2D heterostructures via a one-pot synthetic approach for catalytic hydrogen generation. The interfacial 1T-MoS-C and C-C interactions as well as their electrocatalytic properties were finely controlled by varying the weight percentages of the fullerenes.
View Article and Find Full Text PDFThis work for the first time unfurls the fundamental mechanisms and sets the stage for an approach to derive electrocatalytic activity, which is otherwise not possible, in a traditionally known wide band-gap oxide material. Specifically, we report on the tunable optical properties, in terms of wide spectral selectivity and red-shifted band gap, and electrocatalytic behavior of iron (Fe)-doped gallium oxide (β-GaO) model system. X-ray diffraction (XRD) studies of sintered Ga Fe O (GFO) (0.
View Article and Find Full Text PDFIn situ growth of metallic MoO films on fluorine-doped tin oxide (FTO) and MoO powder in solution was achieved simultaneously by a simple hydrothermal process employing citric acid as the surfactant. The growth mechanism of MoO nanostructures (NSs) at the heterogeneous interface and in homogeneous medium proceeds in a different manner in which seeds grow in a preferred orientation on FTO, whereas they propagate in all directions in solution. The high lattice matching of FTO and MoO favours the film growth which could not be obtained on other conventional substrates.
View Article and Find Full Text PDF