Publications by authors named "Arun V Kolanjiyil"

Aortic lesions, exemplified by bicuspid aortic valves (BAVs), can complicate congenital heart defects, particularly in Turner syndrome patients. The combination of BAV, dilated ascending aorta, and an elongated aortic arch presents complex hemodynamics, requiring detailed analysis for tailored treatment strategies. While current clinical decision-making relies on imaging modalities offering limited biomechanical insights, integrating high-performance computing and fluid-structure interaction algorithms with patient data enables comprehensive evaluation of diseased anatomy and planned intervention.

View Article and Find Full Text PDF

The objectives of this study were to expand and implement a Computational Fluid Dynamics (CFD)-Dissolution, Absorption and Clearance (DAC)-Pharmacokinetics (PK) multi-physics modeling framework for simulating the transport of suspension-based nasal corticosteroid sprays. The mean CFD-predicted peak plasma concentration (C) and area under the curve (AUC) of the plasma concentration-time profile, based on three representative nasal airway models (capturing low, medium and high posterior spray deposition), were within one standard deviation of available in vivo PK data for a representative corticosteroid drug (triamcinolone acetonide). The relative differences in mean C between predictions and in vivo data for low dose (110 µg) and high dose (220 µg) cases were 27.

View Article and Find Full Text PDF
Article Synopsis
  • Pharmaceutical aerosol systems are complex and challenging for computational fluid dynamics (CFD) modeling due to their dynamic turbulence levels, laminar-to-turbulent flow transitions, and intricate particle transport behaviors in various geometries.
  • The study aimed to enhance two-equation turbulence models, particularly the low Reynolds number shear stress transport (SST) approach, for better accuracy in predicting aerosol deposition in different scenarios, including standard benchmark cases and a complex direct-to-infant (D2I) delivery system.
  • By applying corrections for near-wall effects and eddy interaction models, the study achieved significant improvements in simulation accuracy, evidenced by lower regional relative errors between CFD predictions and experimental data.
View Article and Find Full Text PDF

Nasal sprays are typically characterized using in vitro spray metrics such as spray cone angle and droplet size distribution. It is currently not clear how these in vitro metrics correlate with regional nasal deposition, and these relationships could help explain the impact of product differences. In this study, the effects of changes in spray cone angle, spray velocity, spray ovality and droplet size distribution on regional nasal deposition were analyzed using a validated computational fluid dynamics model in recently developed adult characteristic nasal airway anatomies.

View Article and Find Full Text PDF

Nasal sprays, which produce relatively large pharmaceutical droplets and have high momentum, are primarily used to deliver locally acting drugs to the nasal mucosa. Depending on spray pump administration conditions and insertion angles, nasal sprays may interact with the nasal surface in ways that creates complex droplet-wall interactions followed by significant liquid motion after initial wall contact. Additionally, liquid motion can occur after deposition as the spray liquid moves in bulk along the nasal surface.

View Article and Find Full Text PDF

The objective of this study was to characterize the effects of multiple nasal prong interface configurations on nasal depositional loss of pharmaceutical aerosols in a preterm infant nose-throat (NT) airway model. Benchmark in vitro experiments were performed in which a spray-dried powder formulation was delivered to a new preterm NT model with a positive-pressure infant air-jet dry powder inhaler using single- and dual-prong interfaces. These results were used to develop and validate a computational fluid dynamics (CFD) model of aerosol transport and deposition in the NT geometry.

View Article and Find Full Text PDF

Quantifying drug delivery to the site of action using locally-acting nasal suspension sprays is a challenging but important step toward understanding bioequivalence (BE) between test and reference products. The main objective of this study was to investigate the in vitro deposition pattern of two common but different locally-acting nasal suspension sprays using multiple nasal cavities. Twenty anatomically accurate nasal replicas were developed from high-resolution sinonasal computed tomography scans of adults with healthy nasal airways.

View Article and Find Full Text PDF

The alveolar region, encompassing millions of alveoli, is the most vital part of the lung. However, airflow behavior and particle deposition in that region are not fully understood because of the complex geometrical structure and intricate wall movement. Although recent investigations using 3D computer simulations have provided some valuable information, a realistic analysis of the air-particle dynamics in the acinar region is still lacking.

View Article and Find Full Text PDF

Part of the effective prediction of the pharmacokinetics of drugs (or toxic particles) requires extrapolation of experimental data sets from animal studies to humans. As the respiratory tracts of rodents and humans are anatomically very different, there is a need to study airflow and drug-aerosol deposition patterns in lung airways of these laboratory animals and compare them to those of human lungs. As a first step, interspecies computational comparison modeling of inhaled nano-to-micron size drugs (50 nm < d<15μm) was performed using mouse and human upper airway models under realistic breathing conditions.

View Article and Find Full Text PDF

Acute lung injury and acute respiratory distress syndrome (ARDS) represent a heterogenous group of lung disease in critically ill patients that continues to have high mortality. Despite the increased understanding of the molecular pathogenesis of ARDS, specific targeted treatments for ARDS have yet to be developed. ARDS represents an unmet medical need with an urgency to develop effective pharmacotherapies.

View Article and Find Full Text PDF

Pulmonary drug delivery is becoming a favored route for administering drugs to treat both lung and systemic diseases. Examples of lung diseases include asthma, cystic fibrosis and chronic obstructive pulmonary disease (COPD) as well as respiratory distress syndrome (ARDS) and pulmonary fibrosis. Special respiratory drugs are administered to the lungs, using an appropriate inhaler device.

View Article and Find Full Text PDF

Computational predictions of aerosol transport and deposition in the human respiratory tract can assist in evaluating detrimental or therapeutic health effects when inhaling toxic particles or administering drugs. However, the sheer complexity of the human lung, featuring a total of 16 million tubular airways, prohibits detailed computer simulations of the fluid-particle dynamics for the entire respiratory system. Thus, in order to obtain useful and efficient particle deposition results, an alternative modeling approach is necessary where the whole-lung geometry is approximated and physiological boundary conditions are implemented to simulate breathing.

View Article and Find Full Text PDF

This is the second article of a two-part paper, combining high-resolution computer simulation results of inhaled nanoparticle deposition in a human airway model (Kolanjiyil and Kleinstreuer, 2013, "Nanoparticle Mass Transfer From Lung Airways to Systemic Regions--Part I: Whole-Lung Aerosol Dynamics," ASME J. Biomech. Eng.

View Article and Find Full Text PDF

This is a two-part paper describing inhaled nanoparticle (NP) transport and deposition in a model of a human respiratory tract (Part I) as well as NP-mass transfer across barriers into systemic regions (Part II). Specifically, combining high-resolution computer simulation results of inhaled NP deposition in the human airways (Part I) with a multicompartmental model for NP-mass transfer (Part II) allows for the prediction of temporal NP accumulation in the blood and lymphatic systems as well as in organs. An understanding of nanoparticle transport and deposition in human respiratory airways is of great importance, as exposure to nanomaterial has been found to cause serious lung diseases, while the use of nanodrugs may have superior therapeutic effects.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: