Recommendations on study designs that adequately evaluate the in-life effects leading to juvenile bone toxicity, the various imaging modalities that can aid interpretation of the bone effects, biomarkers that may be useful, and regulatory issues were presented in this 2020 ACT symposium. The pathologies encountered in past studies were briefly mentioned. The first speaker covered study design and the numbers of juveniles that may be necessary to power the evaluation.
View Article and Find Full Text PDFDiabetic nephropathy (DN) is a primary cause of end-stage renal disease and is becoming more prevalent because of the global rise in type 2 diabetes. A model of DN, the db/db uninephrectomized ( db/db-uni) mouse, is characterized by obesity, as well as compromised renal function. This model also manifests defects in mineral metabolism common in DN, including hyperphosphatemia, which leads to severe endocrine disease.
View Article and Find Full Text PDFKlotho (KL) regulates mineral metabolism, and diseases associated with KL deficiency are characterized by hyperphosphatemia and vascular calcification (VC). KL is expressed as a membrane-bound protein (mKL) and recognized as the coreceptor for fibroblast growth factor-23 (FGF23) and a circulating soluble form (cKL) created by endoproteolytic cleavage of mKL. The functions of cKL with regard to phosphate metabolism are unclear.
View Article and Find Full Text PDFDuring the past two decades the use and refinements of imaging modalities have markedly increased making it possible to image embryos and fetuses used in pivotal nonclinical studies submitted to regulatory agencies. Implementing these technologies into the Good Laboratory Practice environment requires rigorous testing, validation, and documentation to ensure the reproducibility of data. A workshop on current practices and regulatory requirements was held with the goal of defining minimal criteria for the proper implementation of these technologies and subsequent submission to regulatory agencies.
View Article and Find Full Text PDFPurpose: The purpose of this paper is to validate a rapid and cost-effective ex vivo technique, microCT-based virtual histology, as an alternative to MRI imaging for assessing the therapeutic response in genetically engineered mouse models of cancer.
Procedures: All animal procedures were conducted in accordance with the Guidelines for the Care and Use of Laboratory Animals and were approved by the Institutional Animal Care and Use Committee (IACUC) at the University of Texas Health Science Center at San Antonio. MRI imaging was performed on 6-week-old, bortezomib-treated genetically engineered Patched1, p53 mice that recapitulate the characteristics of human medulloblastoma.