Social bees have been extensively studied for their gut microbial functions, but the significance of the gut microbiota in solitary bees remains less explored. Solitary bee, females provision their offspring with pollen from various plant species, harboring a diverse microbial community that colonizes larvae guts. The is the most abundant microbe, but evidence concerning the effects of and other provision microbes on growth and survival are lacking.
View Article and Find Full Text PDFMost natural mortality of the red sunflower seed weevil, Smicronyx fulvus LeConte (Coleoptera: Curculionidae), occurs while larvae overwinter in the soil. To test the hypothesis that S. fulvus mortality is related to low temperatures, experiments were used to (i) evaluate the temperature at which larvae freeze (= supercooling point [SCP]), (ii) assess possible vertical movement between entry into the soil in fall and adult emergence in summer, and (iii) determine if realistic soil temperatures could explain patterns of overwintering mortality.
View Article and Find Full Text PDFBumble bee (genus Bombus) populations are increasingly under threat from habitat fragmentation, pesticides, pathogens, and climate change. Climate change is likely a prime driver of bumble bee declines but the mechanisms by which changing climates alter local abundance, leading to shifts in geographic range are unclear. Heat tolerance is quite high in worker bumble bees (CT ∼ 48-55 °C), making it unlikely for them to experience these high temperatures, even with climate warming.
View Article and Find Full Text PDFEmbryos of the sunflower moth, (Hulst), were cryopreserved after modification to the method that was previously described for . The workflow to develop the protocol consisted of methods to weaken the embryonic chorion followed by the application of various methods to disrupt the sub-chorionic wax layer. These steps were necessary to render the embryos permeable to water and cryoprotectants.
View Article and Find Full Text PDFEmbryonic selection for vitrification and cryostorage in Drosophila and other dipterans is generally carried out by gross observation of the embryonic development at a constant temperature. In this study, the effect of embryo developmental temperature (19, 20 and 21 °C) on the stage specific convergence of the embryonic development to the developmental stages 15-17, which are relevant for cryopreservation, was studied in a flightless mutant strain of Drosophila melanogaster and compared with the Ore-R strain. The temperature that allowed for the best convergence to stage 16 was chosen for further selection and treatment of the embryos.
View Article and Find Full Text PDFThis study evaluates the efficacy of a cryopreservation protocol for spermatozoa derived from the accessory testis of male Bombus impatiens. It is also the first report of successful cryopreservation of bumble bee spermatozoa. The spermatozoa viability was compared with the similarly treated honey bee spermatozoa derived from its accessory testis.
View Article and Find Full Text PDFInterrupting the spring incubation of Megachile rotundata (F.) with a period of low-temperature storage for synchronizing the bees' emergence with crop bloom is an essential part of M. rotundata management.
View Article and Find Full Text PDFThe development of cryopreservation protocols for Anopheles gambiae could significantly improve research and control efforts. Cryopreservation of any An. gambiae life stage has yet to be successful.
View Article and Find Full Text PDFA non-activating semen diluent does not cause motility or acrosomal reaction or capacitate the sperm cell. The effects of such a diluent on the viability of honey bee spermatozoa stored in ambient conditions were assessed 60 days pre-cryopreservation and 24 h post-cryopreservation. Seven variations of a Tris-based non-activating diluents (FEM1 - FEM7) were compared to samples treated with conventional activating diluent and untreated semen.
View Article and Find Full Text PDFInsects exposed to low temperature stress can experience chill injury, but incorporating fluctuating thermoprofiles increases survival and blocks the development of sub-lethal effects. The specific parameters required for a protective thermoprofile are poorly understood, because most studies test a limited range of thermoprofiles. For example, thermoprofiles with a wave profile may perform better than a square profile, but these two profiles are rarely compared.
View Article and Find Full Text PDFIn a sampling of untreated embryos of the economically important fruit pest species, Anastrepha ludens, the cumulative hatch percentage in the lab was noted to be ∼85%. Approximately 70% of the larvae had eclosed through the posterior pole of the egg. This process is effected by the act of Pole Reversal (PR) of the fully developed pre-hatch larva from the wider anterior to the narrower posterior pole of the egg.
View Article and Find Full Text PDFIn holometabolous insects, larval nutrition affects adult body size, a life history trait with a profound influence on performance and fitness. Individual nutritional components of larval diets are often complex and may interact with one another, necessitating the use of a geometric framework for elucidating nutritional effects. In the honey bee, , nurse bees provision food to developing larvae, directly moderating growth rates and caste development.
View Article and Find Full Text PDFThe Mediterranean fruit fly, Ceratitis capitata, is one of the most serious pests of fruit crops world-wide. During the last decades, area-wide pest management (AW-IPM) approaches with a sterile insect technique (SIT) component have been used to control populations of this pest in an effective and environment-friendly manner. The development of genetic sexing strains (GSS), such as the Vienna 8 strain, has been played a major role in increasing the efficacy and reducing the cost of SIT programs.
View Article and Find Full Text PDFEmbryos of two dipteran species (Musca domestica and Lucilia sericata) were assessed for an effective sampling time that would result in the highest post-cryopreservation hatch rate, with a primary goal to define species-specific egg collection periods and the effects of manual stage selection on post cryopreservation yield. The effects of the time taken to collect eggs on, (a) the proportion of embryos reaching a specific developmental stage between 17 and 20 h of development, and (b) the post-cryopreservation hatch rate were assessed. Permeabilization treatment applied at any stage of embryonic development did not significantly reduce embryo viability.
View Article and Find Full Text PDFEmbryos of Lucilia (Phaenicia) sericata (Meigen) (Diptera Calliphoridae), the green blowfly, were successfully cryopreserved by vitrification in liquid nitrogen and stored for 8 yr. Embryos incubated at 19 degrees C for 17 h after oviposition were found to be the most appropriate stage to cryopreserve. Removal of the embryonic surface water was done using 2-propanol before the alkane treatment to permeabilize the embryo.
View Article and Find Full Text PDFThe aim of this study was to develop a method to cryopreserve the embryos of the pink bollworm moth, Pectinophora gossypiella (Saunders). Previously developed dipteran cryopreservation protocols were not directly adaptable to use with the embryos of this lepidopteran species. Physiochemical and electron microscope observations revealed substantial differences in the structure of the chorion, wax layer, and vitelline membrane complex when comparing the cryopreservable embryonic stages of P.
View Article and Find Full Text PDFAlthough the biochemical correlates of freeze tolerance in insects are becoming well-known, the process of ice formation in vivo is subject to speculation. We used synchrotron x-rays to directly visualise real-time ice formation at 3.3 Hz in intact insects.
View Article and Find Full Text PDFWe tested that hypothesis that slow re-warming rates would improve the ability of Drosophila melanogaster Meigen larvae to survive acute low temperature exposure. Four larval stages (1(st), 2(nd), 3(rd) instars and wandering stage 3(rd) instars) of four wild-type strains were exposed to -7 degrees C for periods of time expected to result in 90 % mortality. Larvae were then either directly transferred to their rearing temperature (21 degrees C), or returned to this temperature in a stepwise fashion (pausing at 0 and 15 degrees C) or by slow warming at 1 or 0.
View Article and Find Full Text PDFWe quantified the variation and plasticity in cold tolerance among four larval stages of four laboratory strains of Drosophila melanogaster in response to both acute (<2h of cold exposure) and chronic ( approximately 7h of cold exposure) cold exposure. We observed significant differences in basal cold tolerance between the strains and among larval stages. Early larval instars were generally more tolerant of acute cold exposures than third-instar larvae.
View Article and Find Full Text PDF