In this paper, we describe the concept of a novel implantable fiber-optic Turbidity Affinity Sensor (TAS) and report on the findings of its in-vitro performance for continuous glucose monitoring. The sensing mechanism of the TAS is based on glucose-specific changes in light scattering (turbidity) of a hydrogel suspension consisting of small particles made of crosslinked dextran (Sephadex G100), and a glucose- and mannose-specific binding protein - Concanavalin A (ConA). The binding of ConA to Sephadex particles results in a significant turbidity increase that is much greater than the turbidity contribution by the individual components.
View Article and Find Full Text PDFBackground & Aims: Inflammation promotes the progression of non-alcoholic steatohepatitis (NASH). Toll-like receptor 4 (TLR4) and TLR9 activation through myeloid differentiation primary response gene 88 (MyD88) and production of mature interleukin-1β (IL-1β) via inflammasome activation contribute to steatohepatitis. Here, we investigated the inter-relationship between TLR signalling and inflammasome activation in dietary steatohepatitis.
View Article and Find Full Text PDFObjective: We assessed and compared the performance levels of a fiber-coupled fluorescence affinity sensor (FAS) for glucose detection in the intradermal tissue and intravascular bed during glucose clamping and insulin administration in a large animal model.
Research Design And Methods: The FAS (BioTex Inc., Houston, TX) was implanted in interstitial tissue and in the intravenous space in nondiabetic, anesthetized pigs over 6-7 h.
Objective: We report results of a pilot clinical study of a subcutaneous fluorescence affinity sensor (FAS) for continuous glucose monitoring conducted in people with type 1 and type 2 diabetes. The device was assessed based on performance, safety, and comfort level under acute conditions (4 h).
Research Design And Methods: A second-generation FAS (BioTex Inc.