ACS Appl Mater Interfaces
December 2020
Printed sensors are among the most successful groups of devices within the domain of printed electronics, both in terms of their application versatility and the emerging market share. However, reports on fully printed gas sensors are rare in the literature, even though it can be an important development toward fully printed multisensor platforms for diagnostics, process control, and environmental safety-related applications. In this regard, here, we present the traditional tin oxide-based completely inkjet-printed co-continuous and mesoporous thin films with an extremely large surface-to-volume ratio and then investigate their NO sensing properties at low temperatures.
View Article and Find Full Text PDFOlive oil is more preferred than other vegetable oils because of the increasing health concern among people throughout the world. The major hindrance in large-scale production of olive oil is olive fruit pests which cause serious economic damage to the olive orchards. This requires careful monitoring and timely application of suitable remedies before pest infestation.
View Article and Find Full Text PDFWe report detailed structural, electrical transport and IR photoresponse properties of large area VO(M1) thin films deposited by a simple cost-effective two-step technique. Phase purity was confirmed by XRD and Raman spectroscopy studies. The high quality of the films was further established by a phase change from low temperature monoclinic phase to high temperature tetragonal rutile phase at 68 °C from temperature dependent Raman studies.
View Article and Find Full Text PDFA metamaterial consisting of an array of gold micro-disks, separated from a ground plane of indium tin oxide (ITO) by a thin film of vanadium dioxide (VO), behaves as a perfect absorber at infrared (IR) frequencies at room temperature. This metamaterial, which is transparent to visible light, can be switched to a highly reflecting state for IR light by heating the metamaterial to temperatures larger than the metal-insulator phase transition temperature 68°C of VO. For a disk diameter of 1.
View Article and Find Full Text PDF