Publications by authors named "Arun Kumar Thittai"

Pulsed laser diodes (PLDs) promise to be an attractive alternative to solid-state laser sources in photoacoustic tomography (PAT) due to their portability, high-pulse repetition frequency (PRF), and cost effectiveness. However, due to their lower energy per pulse, which, in turn, results in lower fluence required per photoacoustic signal generation, PLD-based photoacoustic systems generally have maximum imaging depth that is lower in comparison to solid-state lasers. Averaging of multiple frames is usually employed as a common practice in high PRF PLD systems to improve the signal-to-noise ratio of the PAT images.

View Article and Find Full Text PDF

Objective: The purpose of this paper is to present a more convenient and practical alternate way of increasing the lateral discrete array sampling while using a typical λ pitch linear array transducer at receive for photoacoustic tomography (PAT) application.

Methods: We have employed a linear translation-based approach, in which the array transducer is translated by sub-pitch amount to create an augmented RF frame data having denser lateral spatial sampling. The denser λ/2 and λ/4 pitch data were reconstructed and compared against conventional λ pitch reconstructed PAT image using simulation and tissue mimicking phantom experiments in terms of improvements in resolution and contrast.

View Article and Find Full Text PDF

In elastography, conventional linear array (CLA)-based RF data acquisition provides more accurate displacement measurements in the direction of beam propagation (axial direction) when compared to the perpendicular direction (lateral). Obtaining good quality lateral displacement estimates in ultrasound (US) elastography will lead to several benefits such as obtaining accurate inverse solutions, improving shear strain elastogram quality, getting good quality poroelastograms, and obtaining reliable rotation elastograms. For accomplishing high-precision lateral displacement estimation (LDE), one of the popular methods is by interpolating additional A-lines in between neighboring RF A-lines.

View Article and Find Full Text PDF

The perception of stiffness and slipperiness of a breast mass on palpation is used by physicians to assess the level of suspicion of a lesion as being malignant or benign. However, most current ultrasound elastography imaging methods provide only stiffness-related information. There is no existing approach that provides information about the local rigid body rotation undergone by only a loosely bonded, asymmetrically oriented lesion subjected to a small quasi-static compression.

View Article and Find Full Text PDF

It is well-documented in literature that benign breast lesions, such as fibroadenomas, are loosely bonded to their surrounding tissue and tend to slip under a small quasi-static compression, whereas malignant lesions being firmly bonded to their surrounding tissue do not slip. Recent developments in quasi-static ultrasound elastography have shown that an image of the axial-shear strain distribution can provide information about the bonding condition at the lesion-surrounding tissue boundary. Further studies analyzing the axial-shear strain elastograms revealed that nonzero axial-shear strain values appear inside the lesion, referred to as fill-in, only when a lesion is loosely bonded and asymmetrically oriented to the axis of compression.

View Article and Find Full Text PDF

This study was aimed at developing a method for automatically selecting a few representative frames from several hundred axial-shear strain elastogram frames typically obtained during freehand compression elastography of the breast in vivo. This may also alleviate some inter-observer variations that arise at least partly because of differences in selection of representative frames from a cine loop for evaluation and feature extraction. In addition to the correlation coefficient and frame-average axial strain that have been previously used as quality indicators for axial strain elastograms, we incorporated the angle of compression, which has unique effects on axial-shear strain elastogram interpretation.

View Article and Find Full Text PDF

Quasi-static ultrasound (US) elastography is now a well-established technique that involves acquiring US (RF/envelope) signals from an imaging plane before and after a small quasi-static compression to form axial strain elastograms (ASE). The image quality of the ASEs is a function of the applied axial strain. This relationship was extensively investigated and formalized in terms of strain filter in the literature.

View Article and Find Full Text PDF