Color morphing refers to color change in response to an environmental stimulus. Photochromic materials allow color morphing in response to light, but almost all photochromic materials suffer from degradation when exposed to moist/humid environments or harsh chemical environments. One way of overcoming this challenge is by imparting chemical shielding to the color morphing materials via superomniphobicity.
View Article and Find Full Text PDFWhile there are many droplet manipulation techniques, all of them suffer from at least one of the following drawbacks - complex fabrication or complex equipment or liquid loss. In this work, a simple and portable technique is demonstrated that enables on-demand, contact-less and loss-less manipulation of liquid droplets through a combination of contact electrification and slipperiness. In conjunction with numerical simulations, a quantitative analysis is presented to explain the onset of droplet motion.
View Article and Find Full Text PDFWith the passage of the 2018 Farm Bill that removed hemp from the Controlled Substances Act altogether, production of hemp is experiencing a renaissance. Building on this revival and re-emergence of hemp, we designed and fabricated hemp-based sustainable and robust slippery surfaces by coating hemp paper with beeswax and subsequently infusing it with hemp oil. A wide variety of aqueous liquids and beverages easily slide on our hemp-based sustainable slippery surfaces, without leaving a trace.
View Article and Find Full Text PDFNanomaterials (Basel)
September 2023
Cr(VI) compounds are bioaccumulative and highly toxic pollutants, and there is a need for simple and fast detection methods to monitor their trace levels. In this work, we developed a Eu complex-based fluorescence sensor to easily detect Cr(VI) in water droplets. Our sensor consists of a nanofibrous membrane electrospun with a blend of polyvinylidene fluoride (PVDF), silica particles, and Eu complex.
View Article and Find Full Text PDFIn numerous developing countries, the lower cost of subsidized liquid fuels such as kerosene compared to market-rate fuels often results in fuel adulteration. Such misuse of kerosene is hard to detect with conventional detection technologies because they are either time consuming, expensive, not sensitive enough or require well-equipped analytical laboratories. In this work, we developed an inexpensive and easy-to-use device for rapid and onsite detection of fuel adulteration.
View Article and Find Full Text PDFExisting oil-water filtration techniques require gravity or a pump as the driving force for separation. Here, we demonstrate transpiration-powered oil-water filtration using a synthetic tree, which operates pumplessly and against gravity. From top to bottom, our synthetic tree was composed of: a nanoporous "leaf" to generate suction via evaporation, a vertical array of glass tubes serving as the tree's xylem conduits, and filters attached to the tube inlets to act as the oil-excluding roots.
View Article and Find Full Text PDFSlippery surfaces are sought after due to their wide range of applications in self-cleaning, drag reduction, fouling-resistance, enhanced condensation, biomedical implants etc. Recently, non-textured, all-solid, slippery surfaces have gained significant attention because of their advantages over super-repellent surfaces and lubricant-infused surfaces. Currently, almost all non-textured, all-solid, slippery surfaces are hydrophobic.
View Article and Find Full Text PDFThe recent global outbreaks of epidemics and pandemics have shown us that we are severely under-prepared to cope with infectious agents. Exposure to infectious agents present in biofluids (, blood, saliva, urine ) poses a severe risk to clinical laboratory personnel and healthcare workers, resulting in hundreds of millions of hospital-acquired and laboratory-acquired infections annually. Novel technologies that can minimize human exposure through remote and automated handling of infectious biofluids will mitigate such risk.
View Article and Find Full Text PDFSeparation operations are critical across a wide variety of manufacturing industries and account for about one-quarter of all in-plant energy consumption in the United States. Conventional liquid-liquid separation operations require either thermal or chemical treatment, both of which have a large environmental impact and carbon footprint. Consequently, there is a great need to develop sustainable, clean methodologies for separation of miscible liquid mixtures.
View Article and Find Full Text PDFDroplet evaporation governs many heat- and mass-transfer processes germane in nature and industry. In the past 3 centuries, transient techniques have been developed to characterize the evaporation of sessile droplets. These methods have difficulty in reconciling transient effects induced by the droplet shape and size changes during evaporation.
View Article and Find Full Text PDFDue to their unique functionality, superomniphobic surfaces that display extreme repellency toward virtually any liquid, have a wide range of potential applications. However, to date, the mechanical durability of superomniphobic surfaces remains a major obstacle that prevents their practical deployment. In this work, a two-layer design strategy was developed to fabricate superomniphobic surfaces with improved durability via synergistic effect of interconnected hierarchical porous texture and micro/nano-mechanical interlocking.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
October 2020
Objective: The objective of this study is to evaluate the impact of superhydrophobic coating on the hemodynamics and turbulence characteristics of a bileaflet mechanical valve in the context of evaluating blood damage potential.
Methods: Two 3D printed bileaflet mechanical valves were hemodynamically tested in a pulse duplicator under physiological pressure and flow conditions. The leaflets of one of the two valves were sprayed with a superhydrophobic coating.
Membrane distillation (MD) has been receiving considerable attention as a promising technology for desalinating industrial wastewaters. While hydrophobic membranes are essential for the process, increasing membrane surface hydrophobicity generally leads to the reduction of water vapor flux. In this study, we investigate the mechanisms responsible for this trade-off relation in MD.
View Article and Find Full Text PDFDroplet nucleation and condensation are ubiquitous phenomena in nature and industry. Over the past century, research has shown dropwise condensation heat transfer on nonwetting surfaces to be an order of magnitude higher than filmwise condensation heat transfer on wetting substrates. However, the necessity for nonwetting to achieve dropwise condensation is unclear.
View Article and Find Full Text PDFVirtually all blood-contacting medical implants and devices initiate immunological events in the form of thrombosis and inflammation. Typically, patients receiving such implants are also given large doses of anticoagulants, which pose a high risk and a high cost to the patient. Thus, the design and development of surfaces with improved hemocompatibility and reduced dependence on anticoagulation treatments is paramount for the success of blood-contacting medical implants and devices.
View Article and Find Full Text PDFOmniphobic membranes are attractive for membrane distillation (MD) because of their superior wetting resistance. However, a design framework for MD membrane remains incomplete, due to the complexity of omniphobic membrane fabrication and the lack of fundamental relationship between wetting resistance and water vapor permeability. Here we present a particle-free approach that enables rapid fabrication of monolithic omniphobic membranes for MD desalination.
View Article and Find Full Text PDFThe need to improve blood biocompatibility of medical devices is urgent. As soon as blood encounters a biomaterial implant, proteins adsorb on its surfaces, often leading to several complications such as thrombosis and failure of the device. Therefore, controlling protein adsorption plays a major role in developing hemocompatible materials.
View Article and Find Full Text PDFCoalescence-induced droplet jumping has the potential to enhance the efficiency of a plethora of applications. Although binary droplet jumping is quantitatively understood from energy and hydrodynamic perspectives, multiple aspects that affect jumping behavior, including droplet size mismatch, droplet-surface interaction, and condensate thermophysical properties, remain poorly understood. Here, we develop a visualization technique utilizing microdroplet dispensing to study droplet jumping dynamics on nanostructured superhydrophobic, hierarchical superhydrophobic, and hierarchical biphilic surfaces.
View Article and Find Full Text PDFWhen two liquid droplets coalesce on a superrepellent surface, the excess surface energy is partly converted to upward kinetic energy, and the coalesced droplet jumps away from the surface. However, the efficiency of this energy conversion is very low. In this work, we used a simple and passive technique consisting of superomniphobic surfaces with a macrotexture (comparable to the droplet size) to experimentally demonstrate coalescence-induced jumping with an energy conversion efficiency of 18.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
June 2018
Bacterial infections are a serious issue for many implanted medical devices. Infections occur when bacteria colonize the surface of an implant and form a biofilm, a barrier which protects the bacterial colony from antibiotic treatments. Further, the anti-bacterial treatments must also be tailored to the specific bacteria that is causing the infection.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2017
We utilized superomniphobic surfaces to systematically investigate the different regimes of coalescence-induced self-propulsion of liquid droplets with a wide range of droplet radii, viscosities, and surface tensions. Our results indicate that the nondimensional jumping velocity V is nearly constant (V ≈ 0.2) in the inertial-capillary regime and decreases in the visco-capillary regime as the Ohnesorge number Oh increases, in agreement with prior work.
View Article and Find Full Text PDFSuperomniphobic surfaces (i.e., surfaces that are extremely repellent to both high surface tension liquids like water and low surface tension liquid like oils) can be fabricated through a combination of surface chemistry that imparts low solid surface energy with a re-entrant surface texture.
View Article and Find Full Text PDFSuperomniphobic surfaces are extremely repellent to virtually all liquids. By combining superomniphobicity and shape memory effect, metamorphic superomniphobic (MorphS) surfaces that transform their morphology in response to heat are developed. Utilizing the MorphS surfaces, the distinctly different wetting transitions of liquids with different surface tensions are demonstrated and the underlying physics is elucidated.
View Article and Find Full Text PDFThe hemocompatibility of superhemophobic surfaces is investigated and compared with that of hemophobic surfaces and hemophilic surfaces. This analysis indicates that only those superhemophobic surfaces with a robust Cassie-Baxter state display significantly lower platelet adhesion and activation. It is envisioned that the understanding gained through this work will lead to the fabrication of improved hemocompatible, superhemophobic medical implants.
View Article and Find Full Text PDFFabrication of most superomniphobic surfaces requires complex process conditions or specialized and expensive equipment or skilled personnel. In order to circumvent these issues and make them end-user-friendly, we developed the free-standing, flexible, superomniphobic films. These films can be stored and delivered to the end-users, who can readily attach them to virtually any surface (even irregular shapes) and impart superomniphobicity.
View Article and Find Full Text PDF